To address some challenges of food security and sustainability of the poultry processing industry, a sequential membrane process of ultrafiltration (UF), forward osmosis (FO), and reverse osmosis (RO) is proposed to treat semi-processed poultry slaughterhouse wastewater (PSWW) and water recovery. The pretreatment of PSWW with UF removed 36.7% of chemical oxygen demand (COD), 38.9% of total phosphorous (TP), 24.7% of total solids (TS), 14.5% of total volatile solids (TVS), 27.3% of total fixed solids (TFS), and 12.1% of total nitrogen (TN). Then, the PSWW was treated with FO membrane in FO mode, pressure retarded osmosis (PRO) mode, and L-DOPA coated membrane in the PRO mode. The FO mode was optimal for PSWW treatment by achieving the highest average flux of 10.4 ± 0.2 L/m2-h and the highest pollutant removal efficiency; 100% of COD, 100% of TP, 90.5% of TS, 85.3% of TVS, 92.1% of TFS, and 37.2% of TN. The performance of the FO membrane was entirely restored by flushing the membrane with 0.1% sodium dodecyl sulfate solution. RO significantly removed COD, TS, TVS, TFS, and TP. However, TN was reduced by only 62% because of the high ammonia concentration present in the draw solution. Overall, the sequential membrane process (UF-FO-RO) showed excellent performance by providing high rejection efficiency for pollutant removal and water recovery.
more »
« less
This content will become publicly available on April 1, 2026
The application of forward osmosis for producing highly concentrated biotherapeutics
Forward osmosis (FO) has primarily been explored for applications in water desalination. While FO has also shown potential in concentrating dairy products, little to no attention has been paid to its potential in concentrating biotherapeutics, particularly to the very high concentrations needed for many monoclonal antibody products that are delivered by subcutaneous injection. This study demonstrates the feasibility of using FO as an alternative to ultrafiltration (UF) to achieve highly concentrated protein formulations using human Immunoglobin G (hIgG) as a model protein. The permeate flux in FO, using 1 M NaCl as the draw solution, decreased with increasing hIgG concentration due primarily to concentration polarization effects that are strongly influenced by the increase in feed viscosity for the concentrated hIgG solution. The importance of the hIgG viscosity on the FO performance was demonstrated by performing experiments with concentrated polyethylene glycol solutions and through mathematical modeling that accounts for the effects of both external and internal concentration polarization on FO performance. Batch concentration experiments with FO achieved final hIgG concentrations greater than 290 g/L compared to a maximum achievable concentration in UF of approximately 150 g/L. These results clearly demonstrate the potential of using FO, with high osmotic pressure draw solutions, to achieve highly concentrated formulations of therapeutic proteins that are beyond the capability of current UF processes.
more »
« less
- Award ID(s):
- 2310832
- PAR ID:
- 10653219
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Journal of Membrane Science
- Volume:
- 721
- Issue:
- C
- ISSN:
- 0376-7388
- Page Range / eLocation ID:
- 123839
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Magnetic nanoparticles (MNPs), especially iron oxide (Fe3O4), display distinctive superparamagnetic characteristics and elevated surface-area-to-volume ratios, facilitating improved physicochemical interactions with solutes and pollutants. These characteristics make MNPs strong contenders for use in water treatment applications. This research investigates the application of iron oxide MNPs synthesized via co-precipitation as innovative draw solutes in forward osmosis (FO) for treating synthetic produced water (SPW). The FO membrane underwent surface modification with sulfobetaine methacrylate (SBMA), a zwitterionic polymer, to increase hydrophilicity, minimize fouling, and elevate water flux. The SBMA functional groups aid in electrostatic repulsion of organic and inorganic contaminants, simultaneously encouraging robust hydration layers that improve water permeability. This adjustment is vital for sustaining consistent flux performance while functioning with MNP-based draw solutions. Material analysis through thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR) verified the MNPs’ thermal stability, consistent morphology, and modified surface chemistry. The FO experiments showed a distinct relationship between MNP concentration and osmotic efficiency. At an MNP dosage of 10 g/L, the peak real-time flux was observed at around 3.5–4.0 L/m2·h. After magnetic regeneration, 7.8 g of retrieved MNPs generated a steady flow of ~2.8 L/m2·h, whereas a subsequent regeneration (4.06 g) resulted in ~1.5 L/m2·h, demonstrating partial preservation of osmotic driving capability. Post-FO draw solutions, after filtration, exhibited total dissolved solids (TDS) measurements that varied from 2.5 mg/L (0 g/L MNP) to 227.1 mg/L (10 g/L MNP), further validating the effective dispersion and solute contribution of MNPs. The TDS of regenerated MNP solutions stayed similar to that of their fresh versions, indicating minimal loss of solute activity during the recycling process. The combined synergistic application of SBMA-modified FO membranes and regenerable MNP draw solutes showcases an effective and sustainable method for treating produced water, providing excellent water recovery, consistent operational stability, and opportunities for cyclic reuse.more » « less
-
ABSTRACT Single Pass Tangential Flow Filtration (SPTFF) is increasingly used for inline concentration and final formulation in intensified/continuous processes for monoclonal antibody products. However, these modules typically operate at low feed flux, requiring significant membrane area and often complex internal staging to achieve the desired concentration factor. In this study, a vibration‐assisted SPTFF system was used for inline concentration of soluble protein. The maximum sustainable flux and concentration factor were evaluated under vibratory and non‐vibratory conditions using flux‐stepping experiments. SPTFF performed under vibration was able to achieve single pass concentration factors of 20× at a feed flux of 17.2 L/m2/h, while the non‐vibratory system showed rapid fouling at much lower concentration factors. Furthermore, the vibratory module achieved a 6‐fold higher concentration factor compared to a screened channel cassette. Long‐term filtration experiments demonstrated that the vibratory system could concentrate a 20 g/L protein solution to 100 g/L using a single cassette with stable operation for more than 8 h without protein aggregation. This work highlights the potential opportunity to develop vibratory SPTFF systems for intensified bioprocessing.more » « less
-
Short-wave infrared (SWIR) imaging has been extensively used in defense applications but remains underutilized in the study of soft materials and the broader consumer products industry. Water molecules absorb around ~1450 nm, making moisture-rich objects appear black, whereas surfactants and other common molecules in consumer products do not absorb and provide good contrast. This experimental study showcases the varied capabilities of SWIR imaging in tracking water transport in soft material systems by analyzing dissolution dynamics, tracking phase transitions (when combined with cross-polarized optical imaging), and monitoring drying kinetics in surfactant and polymer solutions. The dynamic phase evolution to equilibria of a binary aqueous solution of a non-ionic surfactant hexaethylene glycol monododecyl ether (C12E6) is presented. The influence of confined hydration in dynamic diffusive interfacial transport (D-DIT) capillaries was investigated by tracking the micellar to hexagonal phase transition concentration (C*). The effects of varying concentrations of an industrially relevant additive - monovalent common salt (NaCl), on the radial (2D) dissolution of lamellar-structured concentrated sodium lauryl ether sulfate (70 wt.% SLE1S) pastes was studied. An equation was developed to estimate the radial dissolution coefficients based on total dissolution time, and surfactant concentrations in the sample and solvent. Water loss was investigated by tracking the drying of aqueous poly(vinyl) alcohol films. In-situ monitoring of drying kinetics is used to draw correlations between the solution viscosity and drying time. SWIR imaging has already revealed previously inaccessible insights into surfactant hydration and holds the potential to become a turnkey method in tracking water transport - enabling better quality control and product stability analysis.more » « less
-
A hybrid ion-exchange and algal photosynthesis (HAPIX) process was used for treatment of side stream centrate from an anaerobic digester treating waste activated sludge. Although the high NH4+-N concentration of the centrate (~1180 mg/L) inhibited algal growth in unamended controls, addition of zeolite reduced the ammonia toxicity due to its ion exchange capacity. Na+ was the major cation exchanged with NH4+. Growth of algae further reduced the NH4+-N concentrations. Different zeolite dosages (60, 150, and 250 g/L) resulted in different concentrations of NH4+-N in solution. Algae grown in lower zeolite dosage (60 g/L) had high protein contents. A mathematical model that combined ion-exchange and algal photosynthesis processes predicted the aqueous NH4+-N concentration well. The HAPIX process is feasible for treatment of high NH4+-N strength side stream wastewaters while regulating intracellular algal biomass contents by adjusting zeolite dosages.more » « less
An official website of the United States government
