skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2026

Title: Shear-Thickening Superplastic Transitions in High-Entropy Oxides
Despite significant interest in their functional properties, the mechanical behavior of high-entropy oxides (HEOs) is not well studied, particularly at elevated temperatures. Bulk (Co,Cu,Mg,Ni,Zn)O (transition metal (TM)-HEO) samples were deformed under compression at applied stresses and temperatures ranging from 5 to 31 MPa and 600 to 850 °C, respectively. All of the deformation conditions result in creep stress exponents of n < 3, indicating that TM-HEO exhibits superplastic deformation. A transition from structural to solution-precipitation-based superplasticity is observed during deformation above 650 °C. Additionally, TM-HEO exhibits shear-thickening behavior when deformed at stresses above 9 MPa. The formation and behavior of a Cu-rich tenorite secondary phase during deformation is identified as a key factor underpinning the deformation mechanisms. The microstructure and phase state of TM-HEO before deformation also influenced the behavior, with finer grain sizes and increasing concentrations of Cu-rich tenorite, resulting in the increased prevalence of solution-precipitation deformation. While complex, the results of this study indicate that TM-HEO deforms through known superplastic deformation mechanisms. Superplasticity is a highly efficient manufacturing method and could prove to be a valuable strategy for forming HEO ceramics into complex geometries.  more » « less
Award ID(s):
2414950
PAR ID:
10653464
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
MDPI, Basel, Switzerland
Date Published:
Journal Name:
Ceramics
Volume:
8
Issue:
4
ISSN:
2571-6131
Page Range / eLocation ID:
136
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. High‐entropy oxides (HEOs) are being extensively studied for various functional applications, but there is limited research into the mechanical behavior of these materials, especially at elevated temperatures. Bulk (Co, Cu, Mg, Ni, Zn)O (transition metal (TM)‐HEO) samples are formed into dome shapes at 800 °C and 70 kPa. Deformation experiments and finite element analysis (FEA) reveal that TM‐HEO has a creep stress exponent ofn = 0.6, indicating that TM‐HEO deforms through superplastic deformation and exhibits shear‐thickening behavior. Comparisons of experimental strain rates to those calculated using existing superplasticity mechanism models signify that TM‐HEO deforms through grain boundary sliding accommodated by a solution‐precipitation mechanism from a secondary phase. A Cu‐rich tenorite phase, commonly observed in the grain boundaries of TM‐HEO, is proposed as the secondary phase facilitating deformation. It is important to highlight here that the superplastic deformation behavior in TM‐HEO is active under modest temperature and pressure conditions, as noted above. Low‐temperature superplastic deformation will provide a powerful method of manufacturing HEO ceramics into net shape parts, greatly expanding their potential applications. 
    more » « less
  2. Abstract The rocksalt structured (Co,Cu,Mg,Ni,Zn)O entropy-stabilized oxide (ESO) exhibits a reversible phase transformation that leads to the formation of Cu-rich tenorite and Co-rich spinel secondary phases. Using atom probe tomography, kinetic analysis, and thermodynamic modeling, we uncover the nucleation and growth mechanisms governing the formation of these two secondary phases. We find that these phases do not nucleate directly, but rather they first form Cu-rich and Co-rich precursor phases, which nucleate in regions rich in Cu and cation vacancies, respectively. These precursor phases then grow through cation diffusion and exhibit a rocksalt-like crystal structure. The Cu-rich precursor phase subsequently transforms into the Cu-rich tenorite phase through a structural distortion-based transformation, while the Co-rich precursor phase transforms into the Co-rich spinel phase through a defect-mediated transformation. Further growth of the secondary phases is controlled by cation diffusion within the primary rocksalt phase, whose diffusion behavior resembles other common rocksalt oxides. Graphical abstract 
    more » « less
  3. Abstract Entropy‐stabilized oxide (ESO) research has primarily focused on discovering unprecedented structures, chemistries, and properties in the single‐phase state. However, few studies discuss the impacts of entropy stabilization and secondary phases on functionality and in particular, electrical conductivity. To address this gap, electrical transport mechanisms in the canonical ESO rocksalt (Co,Cu,Mg,Ni,Zn)O are assessed as a function of secondary phase content. When single‐phase, the oxide conducts electrons via Cu+/Cu2+small polarons. After 2 h of heat treatment, Cu‐rich tenorite secondary phases form at some grain boundaries (GBs), enhancing grain interior electronic conductivity by tuning defect chemistry toward higher Cu+carrier concentrations. 24 h of heat treatment yields Cu‐rich tenorite at all GBs, followed by the formation of anisotropic Cu‐rich tenorite and equiaxed Co‐rich spinel secondary phases in grains, further enhancing grain interior electronic conductivity but slowing electronic transport across the tenorite‐rich GBs. Across all samples, the total electrical conductivity increases (and decreases reversibly) by four orders of magnitude with heat‐treatment‐induced phase transformation by tuning the grains’ defect chemistry toward higher carrier concentration and lower migration activation energy. This work demonstrates the potential to selectively grow secondary phases in ESO grains and at GBs, thereby tuning the electrical properties using microstructure design, nanoscale engineering, and heat treatment, paving the way to develop many novel materials. 
    more » « less
  4. Abstract Talc is commonly found in the cores of exhumed faults and may be important to the dynamics of slip in active fault zones. To understand the rheology of talc at conditions relevant to subduction zones, we conducted torsional deformation experiments at high pressure (1 GPa) and temperatures (450–500°C). Scanning Transmission Electron Microscope imaging revealed a marked decrease in grain size with increasing strain, in addition to the development of grain kinking and nanoporosity. The similarity of these microstructures to talc deformed in natural faults and low‐pressure experiments indicates that the dominant deformation mechanisms of talc are similar across a wide range of depths. We conclude that frictional processes remain an important control on talc rheology even under high normal stresses. However, deformation‐induced porosity could enhance the percolation of high‐pressure or reactive fluids through talc‐rich lithologies. 
    more » « less
  5. Abstract To study the mechanical behavior of polymineralic rocks, we performed deformation experiments on two‐phase aggregates of olivine (Ol) + ferropericlase (Per) with periclase fractions (fPer) between 0.1 and 0.8. Each sample was deformed in torsion atT = 1523 K,P = 300 MPa at a constant strain rate to a final shear strain ofγ = 6 to 7. The stress‐strain data and calculated values of the stress exponent,n, indicate that Ol in our samples deformed by dislocation‐accommodated sliding along grain interfaces while Per deformed via dislocation creep. At shear strains ofγ < 1, the strengths of samples withfPer > 0.5 match model predictions for both phases deforming at the same stress, the lower‐strength bound for two‐phase materials, while the strengths of samples withfPer < 0.5 are greater than predicted by models for both phases deforming at the same strain rate, the upper‐strength bound. These observations suggest a transition from a weak‐phase supported to a strong‐phase supported regime with decreasingfPer. Aboveγ = 4, however, the strength of all two‐phase samples is greater than those predicted by either the uniform‐stress or the uniform‐strain rate bound. We hypothesize that the high strengths in the Ol + Per system are due to the presence of phase boundaries in two‐phase samples, for which deformation is rate limited by dislocation motion along interfacial boundaries. This observation contrasts with the mechanical behavior of samples consisting of Ol + pyroxene, which are weaker, possibly due to impurities at phase boundaries. 
    more » « less