skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 14, 2026

Title: A Bilevel Network Interdiction Problem to Minimize the Number of Active Special Arcs in the Maximum Flow
We consider a bilevel network interdiction problem where the follower aims to maximize the amount of flow from the source node to the sink node, and the leader aims to minimize the number of arcs from a critical set that have positive flow on them, that is, active arcs, in the maximum flow solution obtained by the follower. This problem is motivated by an application in human trafficking disruption. We consider both the optimistic and pessimistic variants of this bilevel optimization problem and develop their respective single-level reformulations. We present a tailored solution method to the pessimistic problem, which solves the problem to optimality for one practically important class of networks. Through computational experiments on randomly generated layered network instances, we show the effectiveness of the proposed methods and demonstrate that the tailored method is orders of magnitude faster than existing approaches in the literature. We also conduct computational experiments on randomly generated test instances inspired by domestic human trafficking networks and draw domain-specific insights.  more » « less
Award ID(s):
2039584
PAR ID:
10653590
Author(s) / Creator(s):
; ;
Publisher / Repository:
INFORMS
Date Published:
Journal Name:
INFORMS Journal on Computing
ISSN:
1091-9856
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider a new class of multi-period network interdiction problems, where interdiction and restructuring decisions are decided upon before the network is operated and implemented throughout the time horizon.We discuss how we apply this new problem to disrupting domestic sex trafficking networks, and introduce a variant where a second cooperating attacker has the ability to interdict victims and prevent the recruitment of prospective victims. This problem is modeled as a bilevel mixed integer linear program (BMILP), and is solved using column-and-constraint generation with partial information. We also simplify the BMILP when all interdictions are implemented before the network is operated. Modeling-based augmentations are proposed to significantly improve the solution time in a majority of instances tested. We apply our method to synthetic domestic sex trafficking networks, and discuss policy implications from our model. In particular, we show how preventing the recruitment of prospective victims may be as essential to disrupting sex trafficking as interdicting existing participants. 
    more » « less
  2. null (Ed.)
    Traditionally, in the bilevel optimization framework, a leader chooses her actions by solving an upper-level problem, assuming that a follower chooses an optimal reaction by solving a lower-level problem. However, in many settings, the lower-level problems might be nontrivial, thus requiring the use of tailored algorithms for their solution. More importantly, in practice, such problems might be inexactly solved by heuristics and approximation algorithms. Motivated by this consideration, we study a broad class of bilevel optimization problems where the follower might not optimally react to the leader’s actions. In particular, we present a modeling framework in which the leader considers that the follower might use one of a number of known algorithms to solve the lower-level problem, either approximately or heuristically. Thus, the leader can hedge against the follower’s use of suboptimal solutions. We provide algorithmic implementations of the framework for a class of nonlinear bilevel knapsack problem (BKP), and we illustrate the potential impact of incorporating this realistic feature through numerical experiments in the context of defender-attacker problems. 
    more » « less
  3. Abstract We study a class of bilevel spanning tree (BST) problems that involve two independent decision‐makers (DMs), the leader and the follower with different objectives, who jointly construct a spanning tree in a graph. The leader, who acts first, selects an initial subset of edges that do not contain a cycle, from the set under her control. The follower then selects the remaining edges to complete the construction of a spanning tree, but optimizes his own objective function. If there exist multiple optimal solutions for the follower that result in different objective function values for the leader, then the follower may choose either the one that is the most (optimistic version) or least (pessimistic version) favorable to the leader. We study BST problems with the sum‐ and bottleneck‐type objective functions for the DMs under both the optimistic and pessimistic settings. The polynomial‐time algorithms are then proposed in both optimistic and pessimistic settings for BST problems in which at least one of the DMs has the bottleneck‐type objective function. For BST problem with the sum‐type objective functions for both the leader and the follower, we provide an equivalent single‐level linear mixed‐integer programming formulation. A computational study is then presented to explore the efficacy of our reformulation. 
    more » « less
  4. We study the mean-standard deviation minimum cost flow (MSDMCF) problem, where the objective is minimizing a linear combination of the mean and standard deviation of flow costs. Due to the nonlinearity and nonseparability of the objective, the problem is not amenable to the standard algorithms developed for network flow problems. We prove that the solution for the MSDMCF problem coincides with the solution for a particular mean-variance minimum cost flow (MVMCF) problem. Leveraging this result, we propose bisection (BSC), Newton–Raphson (NR), and a hybrid (NR-BSC)—method seeking to find the specific MVMCF problem whose optimal solution coincides with the optimal solution for the given MSDMCF problem. We further show that this approach can be extended to solve more generalized nonseparable parametric minimum cost flow problems under certain conditions. Computational experiments show that the NR algorithm is about twice as fast as the CPLEX solver on benchmark networks generated with NETGEN. 
    more » « less
  5. Network alignment is a fundamental task in many high-impact applications. Most of the existing approaches either explicitly or implicitly consider the alignment matrix as a linear transformation to map one network to another, and might overlook the complicated alignment relationship across networks. On the other hand, node representation learning based alignment methods are hampered by the incomparability among the node representations of different networks. In this paper, we propose a unified semi-supervised deep model (ORIGIN) that simultaneously finds the non-rigid network alignment and learns node representations in multiple networks in a mutually beneficial way. The key idea is to learn node representations by the effective graph convolutional networks, which subsequently enable us to formulate network alignment as a point set alignment problem. The proposed method offers two distinctive advantages. First (node representations), unlike the existing graph convolutional networks that aggregate the node information within a single network, we can effectively aggregate the auxiliary information from multiple sources, achieving far-reaching node representations. Second (network alignment), guided by the highquality node representations, our proposed non-rigid point set alignment approach overcomes the bottleneck of the linear transformation assumption. We conduct extensive experiments that demonstrate the proposed non-rigid alignment method is (1) effective, outperforming both the state-of-the-art linear transformation-based methods and node representation based methods, and (2) efficient, with a comparable computational time between the proposed multi-network representation learning component and its single-network counterpart. 
    more » « less