skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 1, 2026

Title: Relighting the fire in Hickson Compact Group (HCG) 15: Magnetised fossil plasma revealed by the SKA Pathfinders and Precursors
In the context of the life cycle and evolution of active galactic nuclei (AGNs), environment plays a key role. In particular, the over-dense environments of galaxy groups, where dynamical interactions and bulk motions have significant impact, offer an excellent but under-explored window into the life cycles of AGNs and the processes that shape the evolution of relativistic plasma. Pilot survey observations with the Australian Square Kilometre Array Pathfinder (ASKAP) Evolutionary Map of the Universe (EMU) survey have recovered diffuse emission associated with the nearby (z = 0.0228) galaxy group HCG15, which was revealed to be strongly linearly polarised. We studied the properties of this emission in unprecedented detail to settle questions about its nature and its relation to the group-member galaxies. We performed a multi-frequency spectropolarimetric study of HCG15, incorporating our ASKAP EMU observations as well as new data from MeerKAT, the LOw-Frequency ARray (LOFAR), Giant Metrewave Radio Telescope (GMRT), and Karl G. Jansky Very Large Array (VLA), along with X-ray data fromXMM-Newtonand optical spectra from Himalayan Chandra Telescope (HCT). Our study confirms that the diffuse structure represents remnant emission from historic AGN activity that is likely to be associated with HCG15-D, some 80 − 86 Myr ago (based on an ageing analysis). We detected significant highly linearly-polarised emission from a diffuse ‘ridge-like’ structure with a highly ordered magnetic field. Our analysis suggests that this emission is generated by the draping of magnetic field lines in the intra-group medium (IGrM). Subsequent investigations with simulations would further improve our understanding of this phenomenon. We confirm that HCG15-C is a group-member galaxy. Finally, we report the detection of thermal emission associated with a background cluster at a redshift ofz ≈ 0.87 projected onto the IGrM of HCG15, which matches the position and redshift of the recent Sunyaev-Zel’dovich (SZ) detection of ACT-CL J0207.8+0209.  more » « less
Award ID(s):
2009227
PAR ID:
10654202
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
A&A
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
697
ISSN:
0004-6361
Page Range / eLocation ID:
A45
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Dual active galactic nuclei (AGNs), a phase in some galaxy mergers during which both central supermassive black holes (SMBHs) are active, are expected to be a key observable stage leading up to SMBH mergers. Constraining the population of dual AGNs in both the nearby and high-zUniverse has proven to be elusive until very recently. We present a multiwavelength follow-up campaign to confirm the nature of a sample of 20 candidate dual AGNs at cosmic noon (z ∼ 2) from the VODKA sample. Through a combination of Hubble Space Telescope and Very Large Array imaging, we refute the possibility of gravitational lensing in all but one target. We find evidence of dual AGNs in three systems, while seven exhibit a single AGN in galaxy pairs, through either strong radio emission or ancillary emission-line data. The remaining systems are confirmed as either quasar−star superpositions (seven) or nonlensed pairs (two) that require further investigations to establish AGN activity. Among the systems with radio detections, we find a variety of radio spectral slopes and UV/optical colors suggesting that our sample contains a range of AGN properties, from obscured radio-quiet objects to those with powerful synchrotron-emitting jets. This study presents one of the largest dedicated multiwavelength follow-up campaigns to date searching for dual AGNs at high redshift. We confirm several of the highest-zsystems at small physical separations, thus representing some of the most evolved dual-AGN systems at the epoch of peak quasar activity known to date. 
    more » « less
  2. ABSTRACT We present two new radio continuum images from the Australian Square Kilometre Array Pathfinder (ASKAP) survey in the direction of the Small Magellanic Cloud (SMC). These images are part of the Evolutionary Map of the Universe (EMU) Early Science Project (ESP) survey of the Small and Large Magellanic Clouds. The two new source lists produced from these images contain radio continuum sources observed at 960 MHz (4489 sources) and 1320 MHz (5954 sources) with a bandwidth of 192 MHz and beam sizes of 30.0 × 30.0 arcsec2 and 16.3 × 15.1 arcsec2, respectively. The median root mean square (RMS) noise values are 186 $$\mu$$Jy beam−1 (960 MHz) and 165 $$\mu$$Jy beam−1 (1320 MHz). To create point source catalogues, we use these two source lists, together with the previously published Molonglo Observatory Synthesis Telescope (MOST) and the Australia Telescope Compact Array (ATCA) point source catalogues to estimate spectral indices for the whole population of radio point sources found in the survey region. Combining our ASKAP catalogues with these radio continuum surveys, we found 7736 point-like sources in common over an area of 30 deg2. In addition, we report the detection of two new, low surface brightness supernova remnant candidates in the SMC. The high sensitivity of the new ASKAP ESP survey also enabled us to detect the bright end of the SMC planetary nebula sample, with 22 out of 102 optically known planetary nebulae showing point-like radio continuum emission. Lastly, we present several morphologically interesting background radio galaxies. 
    more » « less
  3. Abstract We present the discovery of an as yet nonrepeating fast radio burst (FRB), FRB 20210117A, with the Australian Square Kilometre Array Pathfinder (ASKAP), as a part of the Commensal Real-time ASKAP Fast Transients Survey. The subarcsecond localization of the burst led to the identification of its host galaxy atz= 0.214(1). This redshift is much lower than what would be expected for a source dispersion measure (DM) of 729 pc cm−3, given typical contributions from the intergalactic medium and the host galaxy. Optical observations reveal the host to be a dwarf galaxy with little ongoing star formation—very different to the dwarf host galaxies of the known repeating FRBs 20121102A and 20190520B. We find an excess DM contribution from the host and attribute it to the FRB’s local environment. We do not find any radio emission from the FRB site or host galaxy. The low magnetized environment and the lack of a persistent radio source indicate that the FRB source is older than those found in other dwarf host galaxies, establishing the diversity of FRB sources in dwarf galaxy environments. We find our observations to be fully consistent with the “hypernebula” model, where the FRB is powered by an accretion jet from a hyperaccreting black hole. Finally, our high time resolution analysis reveals burst characteristics similar to those seen in repeating FRBs. We encourage follow-up observations of FRB 20210117A to establish any repeating nature. 
    more » « less
  4. null (Ed.)
    The pre-merging system of galaxy clusters Abell 3391-Abell 3395 located at a mean redshift of 0.053 has been observed at 1 GHz in an ASKAP/EMU Early Science observation as well as in X-rays with eROSITA. The projected separation of the X-ray peaks of the two clusters is ~50′ or ~3.1 Mpc. Here we present an inventory of interesting radio sources in this field around this cluster merger. While the eROSITA observations provide clear indications of a bridge of thermal gas between the clusters, neither ASKAP nor MWA observations show any diffuse radio emission coinciding with the X-ray bridge. We derive an upper limit on the radio emissivity in the bridge region of 〈 J 〉 1 GHz < 1.2 × 10 −44 W Hz −1 m −3 . A non-detection of diffuse radio emission in the X-ray bridge between these two clusters has implications for particle-acceleration mechanisms in cosmological large-scale structure. We also report extended or otherwise noteworthy radio sources in the 30 deg 2 field around Abell 3391-Abell 3395. We identified 20 Giant Radio Galaxies, plus 7 candidates, with linear projected sizes greater than 1 Mpc. The sky density of field radio galaxies with largest linear sizes of >0.7 Mpc is ≈1.7 deg −2 , three times higher than previously reported. We find no evidence for a cosmological evolution of the population of Giant Radio Galaxies. Moreover, we find seven candidates for cluster radio relics and radio halos. 
    more » « less
  5. Abstract To facilitate new studies of galaxy-merger-driven fueling of active galactic nuclei (AGNs), we present a catalog of 387 AGNs that we have identified in the final population of over 10,000z< 0.15 galaxies observed by the Sloan Digital Sky Survey-IV (SDSS-IV) integral field spectroscopy survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA). We selected the AGNs via mid-infrared Wide-field Infrared Survey Explorer colors, Swift/Burst Alert Telescope ultra-hard X-ray detections, NRAO Very Large Array Sky Survey and Faint Images of the Radio Sky at Twenty centimeters radio observations, and broad emission lines in SDSS spectra. By combining the MaNGA AGN catalog with a new SDSS catalog of galaxy mergers that were identified based on a suite of hydrodynamical simulations of merging galaxies, we study the link between galaxy mergers and nuclear activity for AGNs above a limiting bolometric luminosity of 1044.4erg s−1. We find an excess of AGNs in mergers, relative to nonmergers, for galaxies with stellar mass ∼1011M, where the AGN excess is somewhat stronger in major mergers than in minor mergers. Further, when we combine minor and major mergers and sort by merger stage, we find that the highest AGN excess occurs in post-coalescence mergers in the highest-mass galaxies. However, we find no evidence of a correlation between galaxy mergers and AGN luminosity or accretion rate. In summary, while galaxy mergers overall do appear to trigger or enhance AGN activity more than nonmergers, they do not seem to induce higher levels of accretion or higher luminosities. We provide the MaNGA AGN Catalog and the MaNGA Galaxy Merger Catalog for the community here. 
    more » « less