skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rotational spectrum, structure, and quadrupole coupling of cyclopropylchloromethyldifluorosilane
Cyclopropylchloromethyldifluorosilane, c-C3H5SiF2CH2Cl, has been synthesized, and its rotational spectrum has been recorded by chirped-pulse Fourier transform microwave spectroscopy. The spectral analysis of several isotopologues indicates the presence of two distinct conformations in the free-jet expansion, which are interconvertible through a rotation of the chloromethyl group. A partial substitution structure is presented for the lower energy conformation and is compared to the equilibrium structure obtained from quantum chemical calculations. Additionally, the presence of the chlorine nucleus leads to the rotational transitions splitting into multiple hyperfine components and χaa, a measure of the electric field gradient along the a axis, is unusually small at merely +0.1393(73) MHz. Various common ab initio and density functional theory methods fail to predict good quadrupole coupling constants (in the principal axis system) that adequately reproduce the observed hyperfine splitting, although diagonalizing the quadrupole coupling tensor from the principal axis system into a nucleus-centered axis system reveals that, overall, these methods calculate reasonably the electric field gradient about the chlorine nucleus. Finally, a total of nine electric dipole forbidden, quadrupole allowed transitions are observed in the rotational spectra of the parent species of the higher energy conformation and the 37Cl isotopologue of the lower energy conformation. These include those of x-type (no change in parity of Ka or Kc), which, to our knowledge, is the first time such transitions have been observed in a chlorine-containing molecule.  more » « less
Award ID(s):
2019072
PAR ID:
10654207
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
160
Issue:
16
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Context. For all the amides detected in the interstellar medium (ISM), the corresponding nitriles or isonitriles have also been detected in the ISM, some of which have relatively high abundances. Among the abundant nitriles for which the corresponding amide has not yet been detected is cyanoacetylene (HCCCN), whose amide counterpart is propiolamide (HCCC(O)NH 2 ). Aims. With the aim of supporting searches for this amide in the ISM, we provide a complete rotational study of propiolamide from 6 to 440 GHz. Methods. Time-domain Fourier transform microwave spectroscopy under supersonic expansion conditions between 6 and 18 GHz was used to accurately measure and analyze ground-state rotational transitions with resolved hyperfine structure arising from nuclear quadrupole coupling interactions of the 14 N nucleus. We combined this technique with the frequency-domain room-temperature millimeter wave and submillimeter wave spectroscopies from 75 to 440 GHz in order to record and assign the rotational spectra in the ground state and in the low-lying excited vibrational states. We used the ReMoCA spectral line survey performed with the Atacama Large Millimeter/submillimeter Array toward the star-forming region Sgr B2(N) to search for propiolamide. Results. We identified and measured more than 5500 distinct frequency lines of propiolamide in the laboratory. These lines were fitted using an effective semi-rigid rotor Hamiltonian with nuclear quadrupole coupling interactions taken into consideration. We obtained accurate sets of spectroscopic parameters for the ground state and the three low-lying excited vibrational states. We report the nondetection of propiolamide toward the hot cores Sgr B2(N1S) and Sgr B2(N2). We find that propiolamide is at least 50 and 13 times less abundant than acetamide in Sgr B2(N1S) and Sgr B2(N2), respectively, indicating that the abundance difference between both amides is more pronounced by at least a factor of 8 and 2, respectively, than for their corresponding nitriles. Conclusions. Although propiolamide has yet to be included in astrochemical modeling networks, the observed upper limit to the ratio of propiolamide to acetamide seems consistent with the ratios of related species as determined from past simulations. The comprehensive spectroscopic data presented in this paper will aid future astronomical searches. 
    more » « less
  2. The molecular structure of the unsubstituted iron(III) phthalocyanine [Formula: see text]-oxo(1) dimer ((PcFe)2O) was determined by single crystal X-ray diffraction. In agreement with the earlier speculations, the dimer has a bent (Fe-O-Fe angle is 152.4[Formula: see text]) structure. The interplay between the [Formula: see text]-[Formula: see text] interactions and steric hindrances caused by the isoindole units led to the observed staggering angle of [Formula: see text]24[Formula: see text] between two phthalocyanine ligands. The high-spin iron(III) centers are located significantly above the phthalocyanine N4 planes (0.57–0.58 Å). Several DFT exchange-correlation functionals were used to calculate the absolute value and sign of the Mössbauer quadrupole splitting and antiferromagnetic coupling constant for X-ray determined geometry of (PcFe)2O. It was demonstrated that the hybrid functionals provide the correct sign of the electric field gradient and the magnitude of the antiferromagnetic coupling constant compared to the pure functionals. 
    more » « less
  3. Lead-208 is the heaviest known doubly magic nucleus and its structure is therefore of special interest. Despite this magicity, which acts to provide a strong restorative force toward sphericity, it is known to exhibit both strong octupole correlations and some of the strongest quadrupole collectivity observed in doubly magic systems. In this Letter, we employ state-of-the-art experimental equipment to conclusively demonstrate, through four Coulomb-excitation measurements, the presence of a large, negative, spectroscopic quadrupole moment for both the vibrational octupole 3 1 and quadrupole 2 1 + state, indicative of a preference for prolate deformation of the states. The observed quadrupole moment is discussed in the context of the expected splitting of the 3 3 two-phonon states, due to the coupling of the quadrupole and octupole motion. These results are compared with theoretical values from three different methods, which are unable to reproduce both the sign and magnitude of this deformation. Thus, in spite of its well-studied nature, Pb 208 remains a puzzle for our understanding of nuclear structure. Published by the American Physical Society2025 
    more » « less
  4. The fine and hyperfine interactions in PbF have been studied using the laser-induced fluorescence (LIF) spectroscopy method. Cold PbF molecular beam was produced by laser-ablating a Pb rod under jet-cooled conditions, followed by the reaction with SF6. The LIF excitation spectrum of the (0, 0) band in the B2Σ+–X2Π1/2 system of the 208PbF, 207PbF, and 206PbF isotopologues has been recorded with rotational, fine structure, and hyperfine-structure resolution. Transitions in the LIF spectrum were assigned and combined with the previous X2Π3/2–X2Π1/2 emission spectrum in the near-infrared region [Ziebarth et al., J. Mol. Spectrosc. 191, 108–116 (1998)] and the X2Π1/2 state pure rotational spectrum of PbF [Mawhorter et al., Phys. Rev. A 84, 022508 (2011)] in a global fit to derive the rotational, spin–orbit, spin–rotation, and hyperfine interaction parameters of the ground (X2Π1/2) and the excited (B2Σ+) electronic states. Molecular constants determined in the present work are compared with previously reported values. Particularly, the significance of the hyperfine parameters, A⊥ and A‖, of 207Pb is discussed. 
    more » « less
  5. Abstract We propose a new scalable platform for quantum computing (QC)—an array of optically trapped symmetric-top molecules (STMs) of the alkaline earth monomethoxide (MOCH3) family. Individual STMs form qubits, and the system is readily scalable to 100–1000 qubits. STM qubits have desirable features for QC compared to atoms and diatomic molecules. The additional rotational degree of freedom about the symmetric-top axis gives rise to closely spaced opposite parityK-doublets that allow full alignment at low electric fields, and the hyperfine structure naturally provides magnetically insensitive states with switchable electric dipole moments. These features lead to much reduced requirements for electric field control, provide minimal sensitivity to environmental perturbations, and allow for 2-qubit interactions that can be switched on at will. We examine in detail the internal structure of STMs relevant to our proposed platform, taking into account the full effective molecular Hamiltonian including hyperfine interactions, and identify useable STM qubit states. We then examine the effects of the electric dipolar interaction in STMs, which not only guide the design of high-fidelity gates, but also elucidate the nature of dipolar exchange in STMs. Under realistic experimental parameters, we estimate that the proposed QC platform could yield gate errors at the 10−3level, approaching that required for fault-tolerant QC. 
    more » « less