skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 1, 2026

Title: Ambient Noise Full Waveform Inversion With Neural Operators
Abstract Numerical simulations of seismic wave propagation are crucial for investigating velocity structures and improving seismic hazard assessment. However, standard methods such as finite difference or finite element are computationally expensive. Recent studies have shown that a new class of machine learning models, called neural operators, can solve the elastodynamic wave equation orders of magnitude faster than conventional methods. Full waveform inversion is a prime beneficiary of the accelerated simulations. Neural operators, as end‐to‐end differentiable operators, combined with automatic differentiation, provide an alternative approach to the adjoint‐state method. State‐of‐the‐art optimization techniques built into PyTorch provide neural operators with greater flexibility to improve the optimization dynamics of full waveform inversion, thereby mitigating cycle‐skipping problems. In this study, we demonstrate the first application of neural operators for full waveform inversion on a real seismic data set, which consists of several nodal transects collected across the San Gabriel, Chino, and San Bernardino basins in the Los Angeles metropolitan area.  more » « less
Award ID(s):
2438772
PAR ID:
10654382
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
American Geophysical Union
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
130
Issue:
11
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sinkhole collapse may result in significant property damage and even loss of life. Early detection of sinkhole attributes (buried voids, raveling zones) is critical to limit the cost of remediation. One of the most promising ways to obtain subsurface imaging is 3D seismic full-waveform inversion. For demonstration, a recently developed 3D Gauss-Newton full-waveform inversion (3D GN-FWI) method is used to detect buried voids, raveling soils, and characterize variable subsurface soil/rock layering. It is based on a finite-difference solution of 3D elastic wave equations and Gauss-Newton optimization. The method is tested first on a data set constructed from the numerical simulation of a challenging synthetic model and subsequently on field data collected from two separate test sites in Florida. For the field tests, receivers and sources are placed in uniform 2D surface grids to acquire the seismic wavefields, which then are inverted to extract the 3D subsurface velocity structures. The inverted synthetic results suggest that the approach is viable for detecting voids and characterizing layering. The field seismic results reveal that the 3D waveform analysis identified a known manmade void (plastic culvert), unknown natural voids, raveling, as well as laterally variable soil/rock layering including rock pinnacles. The results are confirmed later by standard penetration tests, including depth to bedrock, two buried voids, and a raveling soil zone. Our study provides insight into the application of the 3D seismic FWI technique as a powerful tool in detecting shallow voids and other localized subsurface features. 
    more » « less
  2. null (Ed.)
    State-of-the-art seismic imaging techniques treat inversion tasks such as full-waveform inversion (FWI) and least-squares reverse time migration (LSRTM) as partial differential equation-constrained optimization problems. Due to the large-scale nature, gradient-based optimization algorithms are preferred in practice to update the model iteratively. Higher-order methods converge in fewer iterations but often require higher computational costs, more line-search steps, and bigger memory storage. A balance among these aspects has to be considered. We have conducted an evaluation using Anderson acceleration (AA), a popular strategy to speed up the convergence of fixed-point iterations, to accelerate the steepest-descent algorithm, which we innovatively treat as a fixed-point iteration. Independent of the unknown parameter dimensionality, the computational cost of implementing the method can be reduced to an extremely low dimensional least-squares problem. The cost can be further reduced by a low-rank update. We determine the theoretical connections and the differences between AA and other well-known optimization methods such as L-BFGS and the restarted generalized minimal residual method and compare their computational cost and memory requirements. Numerical examples of FWI and LSRTM applied to the Marmousi benchmark demonstrate the acceleration effects of AA. Compared with the steepest-descent method, AA can achieve faster convergence and can provide competitive results with some quasi-Newton methods, making it an attractive optimization strategy for seismic inversion. 
    more » « less
  3. SUMMARY Full-waveform inversion (FWI) methods rely on accurate numerical simulation of wave propagation in the analysed medium. Acoustic or elastic wave equations are often used to model seismic wave propagation. These types of simulations do not account for intrinsic attenuation effects due to material anelasticity, and thus correction techniques have been utilized in practice to partially compensate the anelasticity. These techniques often only consider the waveform amplitude correction based on averaging of overall amplitude response over the entire data set, and ignore the phase correction. Viscoelastic wave equations account for the anelastic response in both waveform amplitude and phase, and are therefore a more suitable alternative. In this study, we present a novel 3-D Gauss–Newton viscoelastic FWI (3-D GN-VFWI) method. To address the main challenge of the Gauss–Newton optimization, we develop formulas to compute the Jacobian efficiently by the convolution of virtual sources and backward wavefields. The virtual sources are obtained by directly differentiating the viscoelastic wave equations with respect to model parameters. In order to resolve complex 3-D structures with reasonable computational effort, a homogeneous attenuation (Q factor) is used throughout the analysis to model the anelastic effects. Synthetic and field experiments are performed to demonstrate the utility of the method. The synthetic results clearly demonstrate the ability of the method in characterizing a challenging velocity profile, including voids and reverse velocity layers. The field experimental results show that method successfully characterizes the complex substructure with two voids and undulating limestone bedrock, which are confirmed by invasive tests. Compared to 3-D elastic FWI results, the presented viscoelastic method produces more accurate results regarding depths of the voids and bedrock. This study suggests that the improvement of imaging accuracy would warrant the widespread use of viscoelastic wave equations in FWI problems. To our best knowledge, this is the first reported study on 3-D GN-VFWI at any scale. This study provides the new theory and formulation for the use of Gauss–Newton optimization on the 3-D viscoelastic problem. 
    more » « less
  4. Abstract Three-dimensional models of Earth’s seismic structure can be used to identify temperature-dependent phenomena, including mineralogical phase and spin transformations, that are obscured in 1-D spherical averages. Full-waveform tomography maps seismic wave-speeds inside the Earth in three dimensions, at a higher resolution than classical methods. By providing absolute wave speeds (rather than perturbations) and simultaneously constraining bulk and shear wave speeds over the same frequency range, it becomes feasible to distinguish variations in temperature from changes in composition or spin state. We present a quantitative joint interpretation of bulk and shear wave speeds in the lower mantle, using a recently published full-waveform tomography model. At all depths the diversity of wave speeds cannot be explained by an isochemical mantle. Between 1000 and 2500 km depth, hypothetical mantle models containing an electronic spin crossover in ferropericlase provide a significantly better fit to the wave-speed distributions, as well as more realistic temperatures and silica contents, than models without a spin crossover. Below 2500 km, wave speed distributions are explained by an enrichment in silica towards the core-mantle boundary. This silica enrichment may represent the fractionated remains of an ancient basal magma ocean. 
    more » « less
  5. We present an adjoint-based optimization method to invert for stress and frictional parameters used in earthquake modeling. The forward problem is linear elastodynamics with nonlinear rate-and-state frictional faults. The misfit functional quantifies the difference between simulated and measured particle displacements or velocities at receiver locations. The misfit may include windowing or filtering operators. We derive the corresponding adjoint problem, which is linear elasticity with linearized rate-and-state friction and, for forward problems involving fault normal stress changes, nonzero fault opening, with time-dependent coefficients derived from the forward solution. The gradient of the misfit is efficiently computed by convolving forward and adjoint variables on the fault. The method thus extends the framework of full-waveform inversion to include frictional faults with rate-and-state friction. In addition, we present a space-time dual-consistent discretization of a dynamic rupture problem with a rough fault in antiplane shear, using high-order accurate summation-by-parts finite differences in combination with explicit Runge–Kutta time integration. The dual consistency of the discretization ensures that the discrete adjoint-based gradient is the exact gradient of the discrete misfit functional as well as a consistent approximation of the continuous gradient. Our theoretical results are corroborated by inversions with synthetic data. We anticipate that adjoint-based inversion of seismic and/or geodetic data will be a powerful tool for studying earthquake source processes; it can also be used to interpret laboratory friction experiments. 
    more » « less