skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 20, 2026

Title: LensNet : Enhancing Real-time Microlensing Event Discovery with Recurrent Neural Networks in the Korea Microlensing Telescope Network
Abstract Traditional microlensing event vetting methods require highly trained human experts, and the process is both complex and time consuming. This reliance on manual inspection often leads to inefficiencies and constrains the ability to scale for widespread exoplanet detection, ultimately hindering discovery rates. To address the limits of traditional microlensing event vetting, we have developed LensNet, a machine learning pipeline specifically designed to distinguish legitimate microlensing events from false positives caused by instrumental artifacts, such as pixel bleed trails and diffraction spikes. Our system operates in conjunction with a preliminary algorithm that detects increasing trends in flux. These flagged instances are then passed to LensNet for further classification, allowing for timely alerts and follow-up observations. Tailored for the multiobservatory setup of the Korea Microlensing Telescope Network and trained on a rich data set of manually classified events, LensNet is optimized for early detection and warning of microlensing occurrences, enabling astronomers to organize follow-up observations promptly. The internal model of the pipeline employs a multibranch Recurrent Neural Network architecture that evaluates time-series flux data with contextual information, including sky background, the full width at half-maximum of the target star, flux errors, point-spread function quality flags, and air mass for each observation. We demonstrate a classification accuracy above 87.5% and anticipate further improvements as we expand our training set and continue to refine the algorithm.  more » « less
Award ID(s):
2108414
PAR ID:
10654673
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; « less
Publisher / Repository:
AAS Journals
Date Published:
Journal Name:
The Astronomical Journal
Volume:
169
Issue:
3
ISSN:
0004-6256
Page Range / eLocation ID:
159
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gaia16aye was a binary microlensing event discovered in the direction towards the northern Galactic disc and was one of the first microlensing events detected and alerted to by the Gaia space mission. Its light curve exhibited five distinct brightening episodes, reaching up to I  = 12 mag, and it was covered in great detail with almost 25 000 data points gathered by a network of telescopes. We present the photometric and spectroscopic follow-up covering 500 days of the event evolution. We employed a full Keplerian binary orbit microlensing model combined with the motion of Earth and Gaia around the Sun to reproduce the complex light curve. The photometric data allowed us to solve the microlensing event entirely and to derive the complete and unique set of orbital parameters of the binary lensing system. We also report on the detection of the first-ever microlensing space-parallax between the Earth and Gaia located at L2. The properties of the binary system were derived from microlensing parameters, and we found that the system is composed of two main-sequence stars with masses 0.57 ± 0.05 M ⊙ and 0.36 ± 0.03 M ⊙ at 780 pc, with an orbital period of 2.88 years and an eccentricity of 0.30. We also predict the astrometric microlensing signal for this binary lens as it will be seen by Gaia as well as the radial velocity curve for the binary system. Events such as Gaia16aye indicate the potential for the microlensing method of probing the mass function of dark objects, including black holes, in directions other than that of the Galactic bulge. This case also emphasises the importance of long-term time-domain coordinated observations that can be made with a network of heterogeneous telescopes. 
    more » « less
  2. During the last 25 yr, hundreds of binary stars and planets have been discovered toward the Galactic bulge by microlensing surveys. Thanks to a new generation of large-sky surveys, it is now possible to regularly detect microlensing events across the entire sky. The OMEGA Key Projet at the Las Cumbres Observatory carries out automated follow-up observations of microlensing events alerted by these surveys with the aim of identifying and characterizing exoplanets as well as stellar remnants. In this study, we present the analysis of the binary lens event Gaia20bof. By automatically requesting additional observations, the OMEGA Key Project obtained dense time coverage of an anomaly near the peak of the event, allowing characterization of the lensing system. The observed anomaly in the lightcurve is due to a binary lens. However, several models can explain the observations. Spectroscopic observations indicate that the source is located at ≤2.0 kpc, in agreement with the parallax measurements from Gaia. While the models are currently degenerate, future observations, especially the Gaia astrometric time series as well as high-resolution imaging, will provide extra constraints to distinguish between them. 
    more » « less
  3. Abstract The current studies of microlensing planets are limited by small number statistics. Follow-up observations of high-magnification microlensing events can efficiently form a statistical planetary sample. Since 2020, the Korea Microlensing Telescope Network (KMTNet) and the Las Cumbres Observatory (LCO) global network have been conducting a follow-up program for high-magnification KMTNet events. Here, we report the detection and analysis of a microlensing planetary event, KMT-2023-BLG-1431, for which the subtle (0.05 mag) and short-lived (5 hr) planetary signature was characterized by the follow-up from KMTNet and LCO. A binary-lens single-source (2L1S) analysis reveals a planet/host mass ratio ofq= (0.72 ± 0.07) × 10−4, and the single-lens binary-source (1L2S) model is excluded by Δχ2= 80. A Bayesian analysis using a Galactic model yields estimates of the host star mass of M host = 0.57 0.29 + 0.33 M , the planetary mass of M planet = 13.5 6.8 + 8.1 M , and the lens distance of D L = 6.9 1.7 + 0.8 kpc. The projected planet-host separation of a = 2.3 0.5 + 0.5 au or a = 3.2 0.8 + 0.7 au, subject to the close/wide degeneracy. We also find that without the follow-up data, the survey-only data cannot break the degeneracy of central/resonant caustics and the degeneracy of 2L1S/1L2S models, showing the importance of follow-up observations for current microlensing surveys. 
    more » « less
  4. ABSTRACT Follow-up observations of high-magnification gravitational microlensing events can fully exploit their intrinsic sensitivity to detect extrasolar planets, especially those with small mass ratios. To make followup observations more uniform and efficient, we develop a system, HighMagFinder, to automatically alert possible ongoing high-magnification events based on the real-time data from the Korea Microlensing Telescope Network (KMTNet). We started a new phase of follow-up observations with the help of HighMagFinder in 2021. Here we report the discovery of two planets in high-magnification microlensing events, KMT-2021-BLG-0171 and KMT-2021-BLG-1689, which were identified by the HighMagFinder. We find that both events suffer the ‘central-resonant’ caustic degeneracy. The planet-host mass-ratio is q ∼ 4.7 × 10−5 or q ∼ 2.2 × 10−5 for KMT-2021-BLG-0171, and q ∼ 2.5 × 10−4 or q ∼ 1.8 × 10−4 for KMT-2021-BLG-1689. Together with two other events, four cases that suffer such degeneracy have been discovered in the 2021 season alone, indicating that the degenerate solutions may have been missed in some previous studies. We also propose a quantitative factor to weight the probability of each solution from the phase space. The resonant interpretations for the two events are disfavoured under this consideration. This factor can be included in future statistical studies to weight degenerate solutions. 
    more » « less
  5. Abstract Interferometric observations of gravitational microlensing events offer an opportunity for precise, efficient, and direct mass and distance measurements of lensing objects, especially those of isolated neutron stars and black holes. However, such observations have previously been possible for only a handful of extremely bright events. The recent development of a dual-field interferometer, GRAVITY Wide, has made it possible to reach out to significantly fainter objects and increase the pool of microlensing events amenable to interferometric observations by 2 orders of magnitude. Here, we present the first successful observation of a microlensing event with GRAVITY Wide and the resolution of microlensed images in the event OGLE-2023-BLG-0061/KMT-2023-BLG-0496. We measure the angular Einstein radius of the lens with subpercent precision,θE = 1.280 ± 0.009 mas. Combined with the microlensing parallax detected from the event light curve, the mass and distance to the lens are found to be 0.472 ± 0.012Mand 1.81  ±  0.05 kpc, respectively. We present the procedure for the selection of targets for interferometric observations and discuss possible systematic effects affecting GRAVITY Wide data. This detection demonstrates the capabilities of the new instrument, and it opens up completely new possibilities for the follow-up of microlensing events and future routine discoveries of isolated neutron stars and black holes. 
    more » « less