skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 12, 2026

Title: User and Recommender Behavior Over Time: Contextualizing Activity Effectiveness Diversity and Fairness in Book Recommendation
Data is an essential resource for studying recommender systems. While there has been significant work on improving and evaluating state-of-the-art models and measuring various properties of recommender system outputs, less attention has been given to the data itself, particularly how data has changed over time. Such documentation and analysis provide guidance and context for designing and evaluating recommender systems, particularly for evaluation designs making use of time (e.g., temporal splitting). In this paper, we present a temporal explanatory analysis of the UCSD Book Graph dataset scraped from Goodreads, a social reading and recommendation platform active since 2006. We measure the book interaction data using a set of activity, diversity, and fairness metrics; we then train a set of collaborative filtering algorithms on rolling training windows to observe how the same measures evolve over time in the recommendations. Additionally, we explore whether the introduction of algorithmic recommendations in 2011 was followed by observable changes in user or recommender system behavior.  more » « less
Award ID(s):
2415042
PAR ID:
10654844
Author(s) / Creator(s):
; ;
Publisher / Repository:
ACM
Date Published:
Page Range / eLocation ID:
280 to 287
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In recent years, a new line of research has taken an interventional view of recommender systems, where recommendations are viewed as actions that the system takes to have a desired effect. This interventional view has led to the development of counterfactual inference techniques for evaluating and optimizing recommendation policies. This article explains how these techniques enable unbiased offline evaluation and learning despite biased data, and how they can inform considerations of fairness and equity in recommender systems. 
    more » « less
  2. Anandkumar, Animashree (Ed.)
    Recommender systems have been extensively used by the entertainment industry, business marketing and the biomedical industry. In addition to its capacity of providing preference-based recommendations as an unsupervised learning methodology, it has been also proven useful in sales forecasting, product introduction and other production related businesses. Since some consumers and companies need a recommendation or prediction for future budget, labor and supply chain coordination, dynamic recommender systems for precise forecasting have become extremely necessary. In this article, we propose a new recommendation method, namely the dynamic tensor recommender system (DTRS), which aims particularly at forecasting future recommendation. The proposed method utilizes a tensor-valued function of time to integrate time and contextual information, and creates a time-varying coefficient model for temporal tensor factorization through a polynomial spline approximation. Major advantages of the proposed method include competitive future recommendation predictions and effective prediction interval estimations. In theory, we establish the convergence rate of the proposed tensor factorization and asymptotic normality of the spline coefficient estimator. The proposed method is applied to simulations, IRI marketing data and Last.fm data. Numerical studies demonstrate that the proposed method outperforms existing methods in terms of future time forecasting. 
    more » « less
  3. null (Ed.)
    The growing amount of online information today has increased opportunity to discover interesting and useful information. Various recommender systems have been designed to help people discover such information. No matter how accurately the recommender algorithms perform, users’ engagement with recommended results has been complained being less than ideal. In this study, we touched on two human-centered objectives for recommender systems: user satisfaction and curiosity, both of which are believed to play roles in maintaining user engagement and sustain such engagement in the long run. Specifically, we leveraged the concept of surprise and used an existing computational model of surprise to identify relevantly surprising health articles aiming at improving user satisfaction and inspiring their curiosity. We designed a user study to first test the validity of the surprise model in a health news recommender system, called LuckyFind. Then user satisfaction and curiosity were evaluated. We find that the computational surprise model helped identify surprising recommendations at little cost of user satisfaction. Users gave higher ratings on interestingness than usefulness for those surprising recommendations. Curiosity was inspired more for those individuals who have a larger capacity to experience curiosity. Over half of the users have changed their preferences after using LuckyFind, either discovering new areas, reinforcing their existing interests, or stopping following those they did not want anymore. The insights of the research will make researchers and practitioners rethink the objectives of today’s recommender systems as being more human-centered beyond algorithmic accuracy. 
    more » « less
  4. Recommender system data presents unique challenges to the data mining, machine learning, and algorithms communities. The high missing data rate, in combination with the large scale and high dimensionality that is typical of recommender systems data, requires new tools and methods for efficient data analysis. Here, we address the challenge of evaluating similarity between two users in a recommender system, where for each user only a small set of ratings is available. We present a new similarity score, that we call LiRa, based on a statistical model of user similarity, for large-scale, discrete valued data with many missing values. We show that this score, based on a ratio of likelihoods, is more effective at identifying similar users than traditional similarity scores in user-based collaborative filtering, such as the Pearson correlation coefficient. We argue that our approach has significant potential to improve both accuracy and scalability in collaborative filtering. 
    more » « less
  5. Abstract Personalized news experiences powered by recommender systems permeate our lives and have the potential to influence not only our opinions, but also our decisions. At the same time, the content and viewpoints contained within news recommendations are driven by multiple factors, including both personalization and editorial selection. Explanations could help users gain a better understanding of the factors contributing to the news items selected for them to read. Indeed, recent works show that explanations are essential for users of news recommenders to understand their consumption preferences and set intentions in line with their goals, such as goals for knowledge development and increased diversity of content or viewpoints. We give examples of such works on explanation and interactive interface interventions which have been effective in influencing readers' consumption intentions and behaviors in news recommendations. However, the state‐of‐the‐art in news recommender systems currently fall short in terms of evaluating such interventions in live systems, limiting our ability to measure their true impact on user behavior and opinions. To help understand the true benefit of these interfaces, we therefore call for improving the realism of studies for news. 
    more » « less