Abstract The thermal Sunyaev–Zel’dovich (tSZ) effect is a powerful tool with the potential for constraining directly the properties of the hot gas that dominates dark matter halos because it measures pressure and thus thermal energy density. Studying this hot component of the circumgalactic medium (CGM) is important because it is strongly impacted by star formation and active galactic nucleus (AGN) activity in galaxies, participating in the feedback loop that regulates star and black hole mass growth in galaxies. We study the tSZ effect across a wide halo-mass range using three cosmological hydrodynamical simulations: Illustris-TNG, EAGLE, and FIRE-2. Specifically, we present the scaling relation between the tSZ signal and halo mass and the (mass-weighted) radial profiles of gas density, temperature, and pressure for all three simulations. The analysis includes comparisons to Planck tSZ observations and to the thermal pressure profile inferred from the Atacama Cosmology Telescope (ACT) measurements. We compare these tSZ data to simulations to interpret the measurements in terms of feedback and accretion processes in the CGM. We also identify as-yet unobserved potential signatures of these processes that may be visible in future measurements, which will have the capability of measuring tSZ signals to even lower masses. We also perform internal comparisons between runs with different physical assumptions. We conclude (1) there is strong evidence for the impact of feedback atR500, but that this impact decreases by 5R500, and (2) the thermodynamic profiles of the CGM are highly dependent on the implemented model, such as cosmic-ray or AGN feedback prescriptions.
more »
« less
This content will become publicly available on October 1, 2026
On the impacts of halo model implementations in Sunyaev-Zeldovich cross-correlation analyses
Statistical studies of the circumgalactic medium (CGM) using Sunyaev-Zeldovich (SZ) observations offer a promising method of studying the gas properties of galaxies and the astrophysics that govern their evolution. Forward modeling profiles from theory and simulations allows them to be refined directly off of data, but there are currently significant differences between the thermal SZ (tSZ) observations of the CGM and the predicted tSZ signal. While these discrepancies could be real, they could also be the result of decisions in the forward modeling used to build statistical measures from theory. In order to see effects of this, we compare an analysis utilizing halo occupancy distributions (HODs) implemented in halo models to simulate the galaxy distribution against previous studies, which weighted their results to match the CMASS galaxy sample, which contains nearly one million galaxies, mainly centrals of group-sized halos, selected for relatively uniform stellar mass across redshifts between 0.4 <z< 0.7. We review some of the implementation differences that can account for changes, such as miscentering, one-halo/two-halo cutoff radii, and mass ranges, all of which will need to be given the proper attention in future high-signal-to-noise studies. We find that our more thorough model predicts a signal with a 33% improved fit than the one from previous studies on the exact same sample. Additionally, we find that modifications that change the satellite fraction even by just a few percent, such as editing the halo mass range and certain HOD parameters, result in strong changes in the final signal. Although significant, this discrepancy from the modeling choices is not large enough to completely account for the existing disagreements between simulations and measurements.
more »
« less
- Award ID(s):
- 2108536
- PAR ID:
- 10654884
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Journal of Cosmology and Astroparticle Physics
- Volume:
- 2025
- Issue:
- 10
- ISSN:
- 1475-7516
- Page Range / eLocation ID:
- 051
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
It is important to understand the cycle of baryons through the circumgalactic medium (CGM) in the context of galaxy formation and evolution. In this study, we forecast constraints on the feedback processes heating the CGM with current and future Sunyaev–Zeldovich (SZ) observations. To constrain these processes, we use a suite of cosmological simulations, the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS). CAMELS varies four different feedback parameters of two previously existing hydrodynamical simulations, IllustrisTNG and SIMBA. We capture the dependences of SZ radial profiles on these feedback parameters with an emulator, calculate their derivatives, and forecast future constraints on these feedback parameters from upcoming experiments. We find that for a galaxy sample similar to what would be obtained with the Dark Energy Spectroscopic Instrument at the Simons Observatory, all four feedback parameters can be constrained (some within the 10% level), indicating that future observations will be able to further restrict the parameter space for these subgrid models. Given the modeled galaxy sample and forecasted errors in this work, we find that the inner SZ profiles contribute more to the constraining power than the outer profiles. Finally, we find that, despite the wide range of parameter variation in active galactic feedback in the CAMELS simulation suite, we cannot reproduce the thermal SZ signal of galaxies selected by the Baryon Oscillation Spectroscopic Survey as measured by the Atacama Cosmology Telescope.more » « less
-
null (Ed.)ABSTRACT We present measurements of the radial profiles of the mass and galaxy number density around Sunyaev–Zel’dovich (SZ)-selected clusters using both weak lensing and galaxy counts. The clusters are selected from the Atacama Cosmology Telescope Data Release 5 and the galaxies from the Dark Energy Survey Year 3 data set. With signal-to-noise ratio of 62 (45) for galaxy (weak lensing) profiles over scales of about 0.2–20 h−1 Mpc, these are the highest precision measurements for SZ-selected clusters to date. Because SZ selection closely approximates mass selection, these measurements enable several tests of theoretical models of the mass and light distribution around clusters. Our main findings are: (1) The splashback feature is detected at a consistent location in both the mass and galaxy profiles and its location is consistent with predictions of cold dark matter N-body simulations. (2) The full mass profile is also consistent with the simulations. (3) The shapes of the galaxy and lensing profiles are remarkably similar for our sample over the entire range of scales, from well inside the cluster halo to the quasilinear regime. We measure the dependence of the profile shapes on the galaxy sample, redshift, and cluster mass. We extend the Diemer & Kravtsov model for the cluster profiles to the linear regime using perturbation theory and show that it provides a good match to the measured profiles. We also compare the measured profiles to predictions of the standard halo model and simulations that include hydrodynamics. Applications of these results to cluster mass estimation, cosmology, and astrophysics are discussed.more » « less
-
Abstract It is important to understand the cycle of baryons through the circumgalactic medium (CGM) in the context of galaxy formation and evolution. In this study, we forecast constraints on the feedback processes heating the CGM with current and future Sunyaev–Zeldovich (SZ) observations. To constrain these processes, we use a suite of cosmological simulations, the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS). CAMELS varies four different feedback parameters of two previously existing hydrodynamical simulations, IllustrisTNG and SIMBA. We capture the dependences of SZ radial profiles on these feedback parameters with an emulator, calculate their derivatives, and forecast future constraints on these feedback parameters from upcoming experiments. We find that for a galaxy sample similar to what would be obtained with the Dark Energy Spectroscopic Instrument at the Simons Observatory, all four feedback parameters can be constrained (some within the 10% level), indicating that future observations will be able to further restrict the parameter space for these subgrid models. Given the modeled galaxy sample and forecasted errors in this work, we find that the inner SZ profiles contribute more to the constraining power than the outer profiles. Finally, we find that, despite the wide range of parameter variation in active galactic feedback in the CAMELS simulation suite, we cannot reproduce the thermal SZ signal of galaxies selected by the Baryon Oscillation Spectroscopic Survey as measured by the Atacama Cosmology Telescope.more » « less
-
ABSTRACT We use the improved IllustrisTNG300 magnetohydrodynamical cosmological simulation to revisit the effect that secondary halo bias has on the clustering of the central galaxy population. With a side length of 205 h−1 Mpc and significant improvements on the subgrid model with respect to previous Illustris simulations, IllustrisTNG300 allows us to explore the dependencies of galaxy clustering over a large cosmological volume and halo mass range. We show at high statistical significance that the halo assembly bias signal (i.e. the secondary dependence of halo bias on halo formation redshift) manifests itself on the clustering of the galaxy population when this is split by stellar mass, colour, specific star formation rate, and surface density. A significant signal is also found for galaxy size: at fixed halo mass, larger galaxies are more tightly clustered than smaller galaxies. This effect, in contrast to the rest of the dependencies, seems to be uncorrelated with halo formation time, with some small correlation only detected for halo spin. We also explore the transmission of the spin bias signal, i.e. the secondary dependence of halo bias on halo spin. Although galaxy spin retains little information about the total halo spin, the correlation is enough to produce a significant galaxy spin bias signal. We discuss possible ways to probe this effect with observations.more » « less
An official website of the United States government
