skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: LES of Neutral Canopy Flows: Direction-of-Interest Aligned and Misaligned with the Mean Pressure-Gradient Force; CHATS Data and Analysis.
For atmospheric turbulence, multiplying an estimate of the convection velocity with the integral time scale is useful for estimating the integral length scale. Velocity scales that have been used to estimate the convection velocity include the local mean velocity, the ratio of $$e$$-folding length and time scales, and the ratio of a prescribed spatial separation and the time lag at which the space-time autocorrelation peaks. A knowledge gap is the lack of evaluation of these velocity scales directly against the convection velocity, especially for canopy flows where previous studies have reported somewhat inconsistent results. The objective of this work is to assess the ability of each candidate velocity scale to estimate the convection velocity in canopy flows. Firstly, large-eddy simulation (LES) results of neutral canopy flows are used to compare these velocity scales to directly quantified convection velocity. When the direction of interest roughly aligns with the mean pressure gradient force (specifically, for an angle of $$7.5^\circ$$ or smaller), all candidate velocity scales other than the local mean wind component approximate the convection velocity fairly well. When the direction of interest departs from the mean pressure gradient force for more than $$15^\circ$$, the ability of each velocity scale to approximate the convection velocity changes substantially. Secondly, data collected during the Canopy Horizontal Array Turbulence Study (CHATS) are used as an example of interpreting estimates of the convection velocity in the field with the guidance from LES findings. Because observational periods are never perfectly neutral, the guidance does not involve direct comparison between observed and simulated velocity scales, but focuses on uncertainties of velocity scale estimates and potential caution needed when using these estimates.  more » « less
Award ID(s):
2113854
PAR ID:
10654911
Author(s) / Creator(s):
;
Publisher / Repository:
Penn State Data Commons
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Large-eddy simulations (LES) above forests and cities typically constrain the simulation domain to the first 10--20\% of the Atmospheric Boundary Layer (ABL), aiming to represent the finer details of the roughness elements and sublayer. These simulations are also commonly driven by a constant pressure gradient term in the streamwise direction and zero stress at the top, resulting in an unrealistic fast decay of the total stress profile. In this study, we investigate five LES setups, including pressure and/or top-shear driven flows with and without the Coriolis force, with the aim of identifying which option best represents turbulence profiles in the atmospheric surface layer (ASL). We show that flows driven solely by pressure not only result in a fast-decaying stress profile, but also in lower velocity variances and higher velocity skewnesses. Top-shear driven flows, on the other hand, better replicate ASL statistics. Overall, we recommend, and provide setup guidance for, simulation designs that include both a large scale pressure forcing and a non-zero stress and scalar flux at the top of the domain, and that also represent the Coriolis force. Such setups retain all the forces used in typical full ABL cases and result in the best match of the profiles of various statistical moments. 
    more » « less
  2. null (Ed.)
    Dimensional analysis suggests that the dissipation length scale ( $$\ell _{{\it\epsilon}}=u_{\star }^{3}/{\it\epsilon}$$ ) is the appropriate scale for the shear-production range of the second-order streamwise structure function in neutrally stratified turbulent shear flows near solid boundaries, including smooth- and rough-wall boundary layers and shear layers above canopies (e.g. crops, forests and cities). These flows have two major characteristics in common: (i) a single velocity scale, i.e. the friction velocity ( $$u_{\star }$$ ) and (ii) the presence of large eddies that scale with an external length scale much larger than the local integral length scale. No assumptions are made about the local integral scale, which is shown to be proportional to $$\ell _{{\it\epsilon}}$$ for the scaling analysis to be consistent with Kolmogorov’s result for the inertial subrange. Here $${\it\epsilon}$$ is the rate of dissipation of turbulent kinetic energy (TKE) that represents the rate of energy cascade in the inertial subrange. The scaling yields a log-law dependence of the second-order streamwise structure function on ( $$r/\ell _{{\it\epsilon}}$$ ), where $$r$$ is the streamwise spatial separation. This scaling law is confirmed by large-eddy simulation (LES) results in the roughness sublayer above a model canopy, where the imbalance between local production and dissipation of TKE is much greater than in the inertial layer of wall turbulence and the local integral scale is affected by two external length scales. Parameters estimated for the log-law dependence on ( $$r/\ell _{{\it\epsilon}}$$ ) are in reasonable agreement with those reported for the inertial layer of wall turbulence. This leads to two important conclusions. Firstly, the validity of the $$\ell _{{\it\epsilon}}$$ -scaling is extended to shear flows with a much greater imbalance between production and dissipation, indicating possible universality of the shear-production range in flows near solid boundaries. Secondly, from a modelling perspective, $$\ell _{{\it\epsilon}}$$ is the appropriate scale to characterize turbulence in shear flows with multiple externally imposed length scales. 
    more » « less
  3. Summary The large-scale dynamics of convection-driven dynamos in a spherical shell, as relevant to the geodynamo, is analyzed with numerical simulation data and asymptotic theory. An attempt is made to determine the asymptotic size (with the small parameter being the Ekman number, Ek) of the forces, and the associated velocity and magnetic fields. In agreement with previous work, the leading order mean force balance is shown to be thermal wind (Coriolis, pressure gradient, buoyancy) in the meridional plane and Coriolis-Lorentz in the zonal direction. The Lorentz force is observed to be weaker than the mean buoyancy force across a range of Ek and thermal forcing; the relative difference in these forces appears to be O(Ek1/6) within the parameter space investigated. We find that the thermal wind balance requires that the mean zonal velocity scales as O(Ek−1/3), whereas the meridional circulation is asymptotically smaller by a factor of O(Ek1/6). The mean temperature equation shows a balance between thermal diffusion and the divergence of the convective heat flux, indicating the presence of a mean temperature length scale of size O(Ek1/6). Neither the mean nor the fluctuating magnetic field show a strong dependence on the Ekman number, though the simulation data shows evidence of a mean magnetic field length scale of size O(Ek1/6). A consequence of the asymptotic ordering of the forces is that Taylor’s constraint is satisfied to accuracy O(Ek1/6), despite the absence of a leading-order magnetostrophic balance. Further consequences of the force balance are discussed with respect to the large-scale flows thought to be important for the geodynamo. 
    more » « less
  4. With the continuing progress in large eddy simulations (LES), and ever increasing computational resources, it is currently possible to numerically solve the time-dependent and anisotropic large scales of turbulence in a wide variety of flows. For some applications this large-scale resolution is satisfactory. However, a wide range of engineering problems involve flows at very large Reynolds numbers where the subgrid-scale dynamics of a practical LES are critically important to design and yet are out of reach given the com- putational demands of solving the Navier Stokes equations; this difficulty is particularly relevant in wall-bounded turbulence where even the large scales are often below the implied filter width of modest cost wall modeled LES. In this paper we briefly introduce a scale enrichment procedure which leverages spatially and spectrally localized Gabor modes. The method provides a physically consistent description of the small-scale velocity field without solving the full nonlinear equations. The enrichment procedure is appraised against its ability to predict small-scale contributions to the pressure field. We find that the method accurately extrapolates the pressure spectrum and recovers pressure variance of the full field remarkably well when compared to a computationally expensive, highly resolved LES. The analysis is conducted both in a priori and a posteriori settings for the case of homogeneous isotropic turbulence. 
    more » « less
  5. A numerical investigation of an asymptotically reduced model for quasigeostrophic Rayleigh-Bénard convection is conducted in which the depth-averaged flows are numerically suppressed by modifying the governing equations. At the largest accessible values of the Rayleigh number Ra, the Reynolds number and Nusselt number show evidence of approaching the diffusion-free scalings of Re ∼ RaE/Pr and Nu ∼ Pr−1/2Ra3/2E2, respectively, where E is the Ekman number and Pr is the Prandtl number. For large Ra, the presence of depth-invariant flows, such as large-scale vortices, yield heat and momentum transport scalings that exceed those of the diffusion-free scaling laws. The Taylor microscale does not vary significantly with increasing Ra, whereas the integral length scale grows weakly. The computed length scales remain O(1) with respect to the linearly unstable critical wave number; we therefore conclude that these scales remain viscously controlled. We do not find a point-wise Coriolis-inertia-Archimedean (CIA) force balance in the turbulent regime; interior dynamics are instead dominated by horizontal advection (inertia), vortex stretching (Coriolis) and the vertical pressure gradient. A secondary, subdominant balance between the Archimedean buoyancy force and the viscous force occurs in the interior and the ratio of the root mean square (rms) of these two forces is found to approach unity with increasing Ra. This secondary balance is attributed to the turbulent fluid interior acting as the dominant control on the heat transport. These findings indicate that a pointwise CIA balance does not occur in the high Rayleigh number regime of quasigeostrophic convection in the plane layer geometry. Instead, simulations are characterized by what may be termed a nonlocal CIA balance in which the buoyancy force is dominant within the thermal boundary layers and is spatially separated from the interior Coriolis and inertial forces. 
    more » « less