Understanding the mechanisms that promote the coexistence of hundreds of species over small areas in tropical forest remains a challenge. Many tropical tree species are presumed to be functionally equivalent shade-tolerant species that differ in performance trade-offs between survival in shade and the ability to quickly grow in sunlight. Variation in plant functional traits related to resource acquisition is thought to predict variation in performance among species, perhaps explaining community assembly across habitats with gradients in resource availability. Many studies have found low predictive power, however, when linking trait measurements to species demographic rates. Seedlings face different challenges recruiting on the forest floor and may exhibit different traits and/or performance trade-offs than older individuals face in the eventual adult niche. Seed mass is the typical proxy for seedling success, but species also differ in cotyledon strategy (reserve vs photosynthetic) or other seedling traits. These can cause species with the same average seed mass to have divergent performance in the same habitat. We combined long-term studies of seedling dynamics with functional trait data collected at a standard developmental stage in three diverse neotropical forests to ask whether variation in coordinated suites of traits predicts variation among species in demographic performance. Across hundreds of species in Ecuador, Panama, and Puerto Rico, we found seedlings displayed correlated suites of leaf, stem, and root traits, which strongly correlated with seed mass and cotyledon strategy. Variation among species in seedling functional traits, seed mass, and cotyledon strategy were strong predictors of trade-offs in seedling growth and survival. Our findings highlight the importance of cotyledon strategy in addition to seed mass as a key component of seed and seedling biology. These results also underscore the importance of matching the ontogenetic stage of the trait measurement to the stage of demographic dynamics. Synthesis: With strikingly consistent patterns across three tropical forests, we find strong evidence for the promise of functional traits to provide mechanistic links between seedling form and demographic performance.
more »
« less
This content will become publicly available on December 17, 2026
Chewing performance and the structure of primate communities
Ecomorphological theory predicts a relationship between the morphology of a given trait and its ecological performance. In turn, variation in ecomorphology is viewed as integral to the structuring of animal communities. This reasoning is practically axiomatic, but the full logic chain is seldom integrated into a single study. We tested the functional relationship between premolar tooth size and chewing performance across a diverse community of wild primates, including chimpanzees and seven monkey species. We found that relatively large premolars were associated with improved food fracture, and that the chewing performance of granivores (seed predators) exceeded that of sympatric folivores and frugivores by 51–56% and 64–68%, respectively. This finding is robust when controlling for variation in chewing effort and seasonal grit ingestion. Evidence of convergent evolution speaks to the fitness advantages of enlarged premolars among granivorous species, and we show that premolar-mediated seed-eating shapes the composition of primate communities across nine African forest sites. Our findings are relevant to palaeoanthropology and the puzzling megadontia of some fossil hominin lineages, as our data favour a diet of stress-limited brittle foods, not ductile foods, as the principal selective pressure favouring the performance benefits of enlarged premolars.
more »
« less
- Award ID(s):
- 2316561
- PAR ID:
- 10655035
- Publisher / Repository:
- The Royal Society
- Date Published:
- Journal Name:
- Proceedings of the Royal Society of London Series B Biological sciences
- ISSN:
- 0080-4649
- Subject(s) / Keyword(s):
- chewing performance, primate feeding ecology, siliceous particulate matter, Paranthropus
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
IntroductionPapionins are a well-studied and morphologically diverse clade of cercopithecid monkeys. Understanding how craniodental morphology varies in this clade has implications for interpreting taxonomic variation in the fossil record and for our understanding of primate evolution. MethodsWe quantified the phenotypic relationship between facial length and dental proportions in N=314 cercopithecid individuals across 10 species (six papionins, two cercopithecins, and two colobines) using dental ratios MMC (molar module component, ratio of the lengths of the third and first molars) and PMM (premolar-molar module, ratio of the lengths of the second molar and the fourth premolar) and two metrics of facial length: palatal length and prosthion – glabella. ResultsFacial length and molar dental proportions are significantly correlated interspecifically across cercopithecids (PGLS, p<0.01), where species with longer faces have relatively longer maxillary and mandibular third molars. These traits are generally not correlated intraspecifically in the cercopithecids sampled, with some exceptions. DiscussionOur data demonstrate that prognathic faces evolved convergently at least twice in papionins, with parsimony supporting that Papio/Theropithecus shared a prognathic ancestor after the divergence of Lophocebus. Additionally, this study lends support to the hypothesis that facial reduction and third molar reduction in human evolution were coordinated and may have been the result of pleiotropy alongside changes in diet.more » « less
-
Abstract Understanding the mechanisms that promote the coexistence of hundreds of species over small areas in tropical forest remains a challenge. Many tropical tree species are presumed to be functionally equivalent shade tolerant species but exist on a continuum of performance trade‐offs between survival in shade and the ability to quickly grow in sunlight. These trade‐offs can promote coexistence by reducing fitness differences.Variation in plant functional traits related to resource acquisition is thought to predict variation in performance among species, perhaps explaining community assembly across habitats with gradients in resource availability. Many studies have found low predictive power, however, when linking trait measurements to species demographic rates.Seedlings face different challenges recruiting on the forest floor and may exhibit different traits and/or performance trade‐offs than older individuals face in the eventual adult niche. Seed mass is the typical proxy for seedling success, but species also differ in cotyledon strategy (reserve vs. photosynthetic) or other leaf, stem and root traits. These can cause species with the same average seed mass to have divergent performance in the same habitat.We combined long‐term studies of seedling dynamics with functional trait data collected at a standard life‐history stage in three diverse neotropical forests to ask whether variation in coordinated suites of traits predicts variation among species in demographic performance.Across hundreds of species in Ecuador, Panama and Puerto Rico, we found seedlings displayed correlated suites of leaf, stem, and root traits, which strongly correlated with seed mass and cotyledon strategy. Variation among species in seedling functional traits, seed mass, and cotyledon strategy were strong predictors of trade‐offs in seedling growth and survival. These results underscore the importance of matching the ontogenetic stage of the trait measurement to the stage of demographic dynamics.Our findings highlight the importance of cotyledon strategy in addition to seed mass as a key component of seed and seedling biology in tropical forests because of the contribution of carbon reserves in storage cotyledons to reducing mortality rates and explaining the growth‐survival trade‐off among species.Synthesis: With strikingly consistent patterns across three tropical forests, we find strong evidence for the promise of functional traits to provide mechanistic links between seedling form and demographic performance.more » « less
-
Red spruce (Picea rubens) is a long-lived tree species that thrives in cool, moist environs. Its ability to adapt to rapidly changing climate is uncertain. In the southern Appalachian Mountains, red spruce reaches its greatest abundance at high elevations, but can also occur across a range of mid and lower elevations, suggesting the possibility of a correlation between genetic variation and habitat. To assess clinal phenotypic variation in functional traits related to climate adaptation, we collected seed from 82 maternal sib families located along replicated elevational gradients in the Great Smoky Mountains National Park, TN (GSMNP) and Mount Mitchell State Park, NC (MMSP). The percentage of filled seeds and seed mass increased with elevation, indicating that successful pollination and seed development was greatest at the highest elevations. Seedlings sourced from GSMNP displayed a strong relationship between elevation and bud set when grown under common garden conditions. High elevation families set bud as many as 10 days earlier than low elevation families, indicating adaptation to local climate. Across parks, no effect of elevation was noted for bud flush. Our results demonstrate that red spruce in the southern Appalachian Mountains displays clinal variation in bud set that may reflect local adaptation to climate, although this varied between the two parks sampled. We suggest that genetic adaption of red spruce to different climate regimes, at both local and broad spatial scales, is in need of more intensive study, and should be carefully considered when selecting seed sources for restoration.more » « less
-
A fundamental assumption of functional ecology is that functional traits are related to interspecific variation in performance. However, the relationship between functional traits and performance is often weak or uncertain, especially for plants. A potential explanation for this inconsistency is that the relationship between functional traits and vital rates (e.g., growth and mortality) is dependent on local environmental conditions, which would lead to variation in trait-rate relationships across environmental gradients. In this study, we examined trait-rate relationships for six functional traits (seed mass, wood density, maximum height, leaf mass per area, leaf area, and leaf dry matter content) using long-term data on seedling growth and survival of woody plant species from eight forest sites spanning a pronounced precipitation and soil phosphorus gradient in central Panama. For all traits considered except for leaf mass per area-mortality, leaf mass per area-growth, and leaf area-mortality relationships, we found widespread variation in the strength of trait-rate relationships across sites. For some traits, trait-rate relationships showed no overall trend but displayed wide site-to-site variation. In a small subset of cases, variation in trait-rate relationships was explained by soil phosphorus availability. Our results demonstrate that environmental gradients have the potential to influence how functional traits are related to growth and mortality rates, though much variation remains to be explained. Accounting for site-to-site variation may help resolve a fundamental issue in trait-based ecology – that traits are often weakly related to performance – and improve the utility of functional traits for explaining key ecological and evolutionary processes.more » « less
An official website of the United States government
