This paper introduces a W-band sequential power amplifier (PA) \cite{0th} with a novel output network designed to minimize passive and combiner losses, while reducing the overall footprint compared to conventional sequential and Doherty PAs\cite{1st}. An isolated output combiner sums two PAs operating in two different modes: the main amplifier operates in class AB and the auxiliary amplifier operates in class C. The measured PA achieves a saturated output power ($$\mathbf{P_{sat}}$$) of 13 dBm and a gain of 12.5 dB with 3 dB bandwidth from 79.5 GHz to 94.5 GHz. Additionally, it demonstrates a peak Power Added Efficiency (PAE) of 19.4\% and a 14.6\% PAE at 6 dB power back-off (PBO) at 87.5 GHz. Furthermore, the PA achieves a data rate of 12 Gb/s for a 16QAM signal with an average output power of 5 dBm, an average PAE of 10\%, and an EVM (RMS) of -20 dB. The PA was fabricated in 16-nm FinFet technology with core area of 0.15mm$^2$. To the authors’ knowledge, this PA has the highest PAE at 6dB PBO for CMOS PAs operating in the W-Band.
more »
« less
A Compact Single-Ended Common-Base Doherty PA in 90-nm BiCMOS With 37.3% Peak PAE for 5G Beamforming Arrays
This article presents a back-off efficient power amplifier (PA) for mm-wave 5G and upcoming 6G beamforming phased array transceivers (PATs), incorporating advanced circuit designs and novel implementations in both passive and active components. Conventional back-off efficient PAs in the mm-wave frequency range occupy a large chip area, making it hard to fit them into PATs. To overcome this issue, we propose a compact back-off efficient Doherty PA (DPA) with a common base (CB) structure as the core of the PA and small low-loss passive elements. In addition, the proposed architecture moves the role of the input hybrid coupler to the interstage matching network while maintaining DPA functionality. The interstage matching provides the required phases for the main and auxiliary PAs, power division, and impedance matching. The PA prototype is fabricated in the GlobalFoundries 90-nm BiCMOS (9 HP) process. It achieves a peak gain of 20.4 dB at 28.45 GHz with a 1-dB bandwidth of 4.45 GHz. Under large-signal conditions, it archives >19.5-dBm Psat with >36% PAEsat. Its P1dB at 26, 28, and 30 GHz are 19.4, 19.3, and 19.3 dBm with 38.5%, 37.3%, and 36.8% PAE1 dB, respectively. In the 6-dB power back-off region, it reaches efficiencies of 29.1%, 31.1%, and 29.3% at 26, 28, and 30 GHz, respectively. When tested with the NR-FR2 test model at these frequencies, the PA achieves Pavg of 8.25, 8.45, and 8 dBm, and PAEavg of 13.9%, 14.5%, and 13.7% for a 400 M 1-CC 64-QAM signal, maintaining an rms error vector magnitude (EVMrms) of −25.8, −25.8, and −25.7 dB. In addition, in adjacent channel power ratio (ACPR) tests, the PA achieves −27, −26.2, and −30.8 dBc on the lower side and −28.4, −28.5, and −27.6 dBc on the higher side channels at 26, 28, and 30 GHz, respectivelyNot Available
more »
« less
- PAR ID:
- 10655517
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Transactions on Microwave Theory and Techniques
- Volume:
- 73
- Issue:
- 1
- ISSN:
- 0018-9480
- Page Range / eLocation ID:
- 540 to 552
- Subject(s) / Keyword(s):
- Beamforming transceivers, Doherty power amplifier (DPA), 5G FR2, load modulation, mm-wave amplifier.
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A balanced-to-Doherty (B2D) mode-reconfigurable power amplifier (PA) is presented in this article, which is endowed with a unique capability of maintaining high linearity and high efficiency against load mismatch. The Doherty operation of this PA is based on a new Doherty PA (DPA) architecture configured from an ideal balanced amplifier, named quasi-balanced DPA (QB-DPA). This article, for the first time, analytically proves that the QB-DPA is functionally equivalent to a standard DPA. Most importantly, this new discovery enables PA reconfiguration between the Doherty and balanced modes. With the tunability implemented using a silicon-on-insulator (SOI)-based single-poledouble-throw (SPDT) switch, a reconfigurable B2D PA prototype using GaN technology is demonstrated at 3.5 GHz, exhibiting the state-of-the-art linear DPA performance in the nominal 50-Ω load condition. Specifically, the Doherty mode achieves a continuous-wave measurement efficiency of 70% and 54.5% at the maximum output power of 41.9 dBm and 6-dB power backoff, respectively. In the modulated long-term evolution (LTE) evaluation, the DPA exhibits -37-dB adjacent channel power leakage (ACPR) and 2.36% error vector magnitude (EVM) at the maximum rated power of 34.5 dBm while achieving a 42.4% efficiency. It is experimentally demonstrated that the Doherty (QB-DPA) mode is well resistant to load mismatch with high efficiency across a majority portion of the 2:1 voltage standing wave ratio (VSWR) circle, while the combination of Doherty and balanced modes can ensure a constantly linear performance of the B2D PA (e.g., 2.2%-5% of EVM) under the entire mismatch condition.more » « less
-
This article presents a dual-band power amplifier for 28 and 39 GHz frequency bands based on a new dual-path transformer (DPT). This DPT can provide two optimum inductive values at two different frequency bands to optimally design the matching networks for each band without using any switch circuitries. It operates as the output and input matching networks in a parallel power combiner and divider, respectively. DPT-based PA breaks the trade-off between bandwidth and performance in conventional wideband PAs by separating one whole wideband into two narrow bands providing optimum input and output matchings for each band. The DPT-based PA has two input and two output ports. One set of input and output ports is dedicated to a lower frequency band and the other set of input and outport ports can be used for a higher frequency band. Each output port can drive a separate antenna in a phased array for each frequency band. The proposed PA prototype is fabricated in a 65 nm CMOS process achieving 15.3 and 14.0 dBm of saturated output power in 28 and 39 GHz. The peak efficiency of the PA is 34.1% and 30.2% at 28 and 39 GHz frequency bands. The PA has a measured EVM with 64-QAM modulated signal in both frequency bands showing −25.03 and −25.10 dB in the low and higher frequency bands, respectively.more » « less
-
An envelope elimination and restoration (EER) transmitter that comprises a class-E power amplifier and a digitally controlled current DAC modulator is presented. A switched capacitor DAC is designed to control an open-loop transconductor that operates as a current modulator, modulating the amplitude of the current supplied to a class-E PA. Such a topology allows for increased filtering of the quantization noise that is problematic in most digital PAs (DPA). The system measurements yield a peak output power and power added efficiency (PAE) of 22.5 dBm and 23.6%, respectively. When applying a WCDMA signal, the measured EVM is 1.32% and the adjacent channel power ratio (ACPR) is -37.9 dBc, while outputting 19.9 dBm at 14.3% PAE. For an LTE signal, the measured EVM is 3.72% and the ACLR is -30.2 dBc, while outputting 18.1 dBm at 10.6% PAE.more » « less
-
An analytic theory for dual-input outphasing power amplifiers that incorporate in one unified treatment, the continuum of solutions for power combining including the Doherty and Chireix modes is presented. This unified theory developed at the current-source reference planes reveals the performance trade-off achieved by all of the possible power amplifier (PA) combiners within the continuum of solutions. Furthermore, it identifies a novel type of dual-input hybrid Chireix-Doherty PA that combines key features of the Doherty and Chireix operations such that the fundamental drain voltages applied to both the main and auxiliary transistors remain constant. This hybrid PA relies on an input outphasing angle varying with the input power level to obtain the correct load modulation behavior. A 2-GHz dual-input hybrid Chireix-Doherty PA is implemented using nonlinear embedding and experimentally evaluated to validate the theory. A drain efficiency of 61% at 9-dB backoff power and a maximum output power of about 43 dBm are obtained for continuous-wave (CW) measurements. The efficiency increases monotonously with output power unlike that of the Doherty PA used for comparison. When excited with a 20-MHz LTE signal with 9.5-dB peak-to-average power ratio (PAPR), the dual-input PA yields a 60.0% average drain efficiency and -48.1-dBc adjacent-channel power-leakage ratio (ACLR) after linearization.more » « less
An official website of the United States government

