skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: WIP: A Multi-tiered Strategy to Increase Freshman Retention
This work-in-progress paper focuses on a redesigned first-year experience (FYE) program at [University Name], aimed at increasing student success and retention. While the retention of undergraduate engineering students is essential for addressing the global demand for qualified engineers, first-year retention rates remain a significant challenge. This paper will explore how the redesigned program addresses this challenge. Initially, a project-based Engineering 101 course was revamped in 2016 but showed limited improvement in retention rates, stabilizing around the mid-60% range. In 2021, the program was further restructured into a comprehensive, multi-semester experience named the "[School Mascot] Design Experience," expanding its scope to include students of all majors. The redesigned program integrates the Kern Entrepreneurial Engineering Network (KEEN) Entrepreneurial Mindset framework, emphasizing curiosity, connections, and creating value [1], with Stanford d.school’s Design Thinking model [2]. This approach engages first-year students through multidisciplinary teamwork, peer mentorship, and professional competency workshops, aiming to nurture both academic success and lifelong learning skills. Preliminary results reveal promising trends, with retention rates increasing to 77% in the academic year 2022-2023, representing a significant improvement over prior iterations and exceeding the college’s average by 6% and the university’s average by 5%. This study further explores the correlation between program components and their influence on retention and examines the following research questions: RQ1: How much has this redesigned FYE increased student retention? RQ2: Are students who continue to the spring semester retained at a higher rate? RQ3: To what extent does participation in the redesigned program increase students’ self-reported dimensions of curiosity? RQ4: How does the curiosity level compare between retained students and those not retained?  more » « less
Award ID(s):
2221623
PAR ID:
10655538
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
ASEE Conferences
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In this work-in-progress study, the engineering identities of students enrolled in a first-year engineering (FYE) program were surveyed to investigate whether students identify with engineering (in general or with a specific engineering major) during their first year and how differences in identities impact intent to persist in engineering. Literature suggests a strong engineering identity is linked to student retention and can positively impact a student’s trajectory within an engineering program. To investigate these interactions, a survey was distributed at a large public institution in the southeast at the beginning and end of the Fall semester. Most students reported they had decided on a specific engineering major even in the beginning of their first engineering course. While students are relatively confident in that major choice at the beginning of the year, their confidence increased by the end of the semester. Future work will invite students for interviews to elucidate understanding in how a student’s views of the engineering profession affect their FYE experience and the role the FYE curriculum has in their anticipated engineering major and themselves as engineers. 
    more » « less
  2. null (Ed.)
    The Academy of Engineering Success (AcES) program, established in 2012 and supported by NSF S-STEM award number 1644119 throughout 2016-2021, employs literature-based, best practices to support and retain underprepared and underrepresented students in engineering through graduation with the ultimate goal of diversifying the engineering workforce. A total of 71 students, including 21 students supported by S-STEM scholarships, participated in the AcES program between 2016-2019 at a large R1 institution in the mid-Atlantic region. All AcES students participate in a common program during their first year, comprised of: a one-week summer bridge experience, a common fall professional development course and spring “Engineering in History” course, and a common academic advisor. These students also have opportunities for: (1) faculty-student, student-student, and industry mentor-student interaction, (2) academic support and student success education, and (3) major and career exploration – all designed to help students develop feelings of institutional inclusion, engineering self-efficacy and identity, and academic and professional success skills. They also participate in the GRIT, Longitudinal Assessment of Engineering Self-Efficacy (LAESE), and the Motivated Strategies for Learning Questionnaire (MSLQ) surveys plus individual and focus group interviews at the start, midpoint, and end of each fall semester and at the end of the spring semester. The surveys provide a measure of students’ GRIT, their beliefs related to the intrinsic value of engineering and learning, their feelings of inclusion and test anxiety, and their self-efficacy related to engineering, math, and coping skills. The interviews provide information related to the student experience, feelings of inclusion, and program impact. Institutional data, combined with the survey and interview responses, are used to examine four research questions designed to examine the relationship of the elements of the AcES program to participants’ academic success and retention in engineering. Early analyses of the student retention data and survey responses from the 2017 and 2018 cohorts indicated students who ultimately left engineering before the start of their second year initially scored higher in areas of engineering self-efficacy and test anxiety, than those who stayed in engineering, while those who retained to the second year began their engineering education with lower self-efficacy scores, but higher scores related to the belief in the intrinsic value of engineering, learning strategy use, and coping self-efficacy. These results suggest that students who start with unrealistically high expectations of their performance leave engineering at higher rates than students who start with lower personal performance expectations, but have stronger value of the field and strategies for meeting challenges. These data appear to support the Kruger-Dunning effect in which students with limited knowledge of a specific field overestimate their abilities to perform in that area or underestimate the level of effort success may require. This paper will add an analysis of the academic success and retention data from 2019 cohort to this research, discuss the impact of COVID-19 to this program and research, as well as illuminate the quantitative results with the qualitative data from individual and focus group interviews regarding the aspects of the AcES program that impact student success, their expectations and methods for overcoming academic challenges, and their feelings of motivation and inclusion. 
    more » « less
  3. Student retention in STEM disciplines, especially engineering, continues to be a challenge for higher education institutions. Poor retention rates have been attributed to academic and institutional isolation, exclusion from social and professional networks, unsupportive peer and family communities, a lack of knowledge about the academic community and financial obstacles. The importance of retention in engineering has attracted increasing attention from many stakeholders in academia including faculty, staff, administrators and students. Its significance goes beyond the benefits for the academic institutions to encompass national concerns. At a large land-grant university in the mid-Atlantic region, between 2003 and 2012, an average thirty percent of first-year engineering students left engineering before their second year. A three-year study (2007-2010) done to gain insight into this attrition rate, showed that students mainly left because of low self-efficacy, lack of interest in and knowledge about engineering and the institution, disconnection from the engineering profession and academic difficulty. To address these issues, an integrated supplemental program was implemented in the first-year engineering program. Students must be in first-time, first-year standing to enroll in the program, which includes a professional development and academic success course beginning with a pre-fall bridge component. The program also provides direct pathways to academic enrichment activities such as undergraduate research. It helps students to develop strategies for academic success, explore engineering careers and start building a professional network through a multi-level peer, faculty and alumni mentoring system. Students are systematically and deliberately immersed in curricular and co-curricular activities with their peer, faculty and alumni mentors. The program was piloted with a NASA Space Grant in 2012 and funded by NSF in 2016. The goal of this evidence-based practice paper is to share the challenges, logistics and results of the implementation of this program in our standard first-year engineering experience. 
    more » « less
  4. POSTER. Presented at the Symposium (9/12/2019) Abstract: The Academy of Engineering Success (AcES) employs literature-based, best practices to support and retain underrepresented students in engineering through graduation with the ultimate goal of diversifying the engineering workforce. AcES was established in 2012 and has been supported via NSF S-STEM award number 1644119 since 2016. The 2016, 2017, and 2018 cohorts consist of 12, 20, and 22 students, respectively. Five S-STEM supported scholarships were awarded to the 2016 cohort, seven scholarships were awarded to students from the 2017 cohort, and six scholarships were awarded to students from the 2018 cohort. AcES students participate in a one-week summer bridge experience, a common fall semester course focused on professional development, and a common spring semester course emphasizing the role of engineers in societal development. Starting with the summer bridge experience, and continuing until graduation, students are immersed in curricular and co-curricular activities with the goals of fostering feelings of institutional inclusion and belonging in engineering, providing academic support and student success skills, and professional development. The aforementioned goals are achieved by providing (1) opportunities for faculty-student, student-student, and industry mentor-student interaction, (2) academic support, and student success education in areas such as time management and study skills, and (3) facilitated career and major exploration. Four research questions are being examined, (1) What is the relationship between participation in the AcES program and participants’ academic success?, (2) What aspects of the AcES program most significantly impact participants’ success in engineering, (3) How do AcES students seek to overcome challenges in studying engineering, and (4) What is the longitudinal impact of the AcES program in terms of motivation, perceptions, feelings of inclusion, outcome expectations of the participants and retention? Students enrolled in the AcES program participate in the GRIT, LAESE, and MSLQ surveys, focus groups, and one-on-one interviews at the start and end of each fall semester and at the end of the spring semester. The surveys provide a measure of students’ GRIT, general self-efficacy, engineering self-efficacy, test anxiety, math outcome efficacy, intrinsic value of learning, inclusion, career expectations, and coping efficacy. Focus group and interview responses are analyzed in order to answer research questions 2, 3, and 4. Survey responses are analyzed to answer research question 4, and institutional data such as GPA is used to answer research question 1. An analysis of the 2017 AcES cohort survey responses produced a surprising result. When the responses of AcES students who retained were compared to the responses of AcES students who left engineering, those who left engineering had higher baseline values of GRIT, career expectations, engineering self-efficacy, and math outcome efficacy than those students who retained. A preliminary analysis of the 2016, 2017, and 2018 focus group and one-on-one interview responses indicates that the Engineering Learning Center, tutors, organized out of class experiences, first-year seminar, the AcES cohort, the AcES summer bridge, the AcES program, AcES Faculty/Staff, AcES guest lecturers, and FEP faculty/Staff are viewed as valuable by students and cited with contributing to their success in engineering. It is also evident that AcES students seek help from peers, seek help from tutors, use online resources, and attend office hours to overcome their challenges in studying engineering. 
    more » « less
  5. null (Ed.)
    This complete research paper documents how confidence in choice of intended major and self-regulated decision-making competency influence whether a student changes their intended major while participating in a compulsory first-year engineering (FYE) program. Initial major, confidence in that major choice, and self-regulated decision-making competency were documented in the Fall of 2017 for students matriculating into a FYE program. Student enrollment in a major in the Fall of 2018 was connected to this data. Retention in any engineering major and in the student’s intended major were analyzed using logistic regression. 
    more » « less