skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Conserving groundwater: Why irrigators chose to tax themselves
At the turn of the century, irrigators in San Luis Valley (SLV), Colorado confronted a reality of precipitously dropping water levels of their shared groundwater resource stemming from their collective overextraction. Rather than continuing with business as usual—risking further declines and potential state intervention—they decided to self-organize and agreed to adopt a pumping fee, substantially increasing the cost of water—one of their key agricultural inputs. This innovative approach to conservation departs from those commonly championed by many groundwater stakeholders, who tend to favor conservation policies that decrease—not increase—costs, such as subsidizing more efficient irrigation technology or paying farmers to fallow their land. Despite few empirical examples of the introduction of a pumping fee, there are sound economic reasons to consider this approach. In this article, we review the adoption of this home-made policy, discussing the process and reasoning behind the stakeholders’ choices, the economic theory that supports it, and some of the agricultural, hydrological, and social outcomes that have resulted from it. The case study illuminates the potential benefits of a groundwater fee but also highlights that policy choices are multifaceted and what works in one scenario does not imply it is a panacea. The article concludes with a discussion of a recent and surprising policy move: SLV farmers have decided to increase the primary groundwater pumping fee exponentially to $500 per acre-foot (10 times the original fee in 2009). We discuss how this new policy represents a shift from a Pigouvian tax structure to what resembles more of a cap-and-trade system. While the results of this latest policy innovation are still unknown, the eventual results promise to be instructive not only to SLV but also to other areas facing similar water scarcity issues.  more » « less
Award ID(s):
2108196
PAR ID:
10655690
Author(s) / Creator(s):
;
Publisher / Repository:
University of California Press
Date Published:
Journal Name:
Elem Sci Anth
Volume:
13
Issue:
1
ISSN:
2325-1026
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Groundwater scarcity poses threats to communities across the globe, and effectively managing those challenges requires designing policy that achieves institutional fit. Collective action is well-suited to match rules with local context, and multiple pathways exist for communities to achieve reductions in groundwater use. To better understand how local conditions influence rule design, we examine two groundwater-reliant communities in the Western US that engaged in collective-action to arrive at distinct groundwater management rules. We consider: what drove stakeholders in Northwestern Kansas (NWKS) and San Luis Valley, Colorado (SLV) to adopt local groundwater policies, and why were different management pathways chosen? Further, why is more heterogeneity observed between local management organizations in SLV as compared to NWKS? To investigate these questions, we employ grounded theory to interpret the rules in reference to local hydro-agro-economic statistics and interviews with stakeholders (n= 19) in each region selected by expert sampling. We find that the additional goals of groundwater rules in SLV, partially driven by key contrasts in the resource system compared to NWKS, and higher resource productivity in SLV, creates both the need for and efficacy of a price-centered policy. Furthermore, variation in the resource systems and associated farm characteristics between subdistricts drives higher heterogeneity in rule design between local management districts in SLV compared to NWKS. More generally, we find the local flexibility afforded through the collective-action process as critical, even if it were to arrive at alternative, non-economic based incentives. 
    more » « less
  2. Innovative groundwater management strategies are needed to preserve aquifers for crop irrigation. For sustainability to be lasting, any strategy must balance environmental goals with the economic aims of farmers. These tradeoffs are difficult to manage due to the inherent uncertainty in farming. To address these challenges, we develop a transferable two‐stage stochastic modeling framework to support optimal multi‐year crop and irrigation planning under groundwater pumping restrictions and uncertain precipitation. This modular framework is broadly applicable to regions facing groundwater overuse, helping to balance aquifer sustainability and farmer profitability under uncertainty. We illustrate the model using a case study from western Kansas, USA, where irrigators self‐imposed 5‐year groundwater pumping limits to extend the aquifer's lifespan. While these multi‐year allocation periods offer flexibility, they introduce a temporal dimension to decision‐making beyond typical annual planning. Optimal cropping and irrigation strategies from the stochastic model significantly outperform observed farmer behavior during the first two 5‐year allocation periods (2013–2022), and outperform a deterministic model assuming long‐term average precipitation during dry conditions. We show that optimal crop choices shift from corn to sorghum under more stringent pumping restrictions. Under these constraints, irrigators benefit by conserving water in earlier years and using more in later years, whereas the reverse holds under more lenient restrictions. Extending the allocation window further enhances profitability, though marginal gains diminish beyond 7 years. This modeling framework offers insights for agricultural regions seeking to improve long‐term groundwater management through strategies that support both economic resilience and hydrologic sustainability. 
    more » « less
  3. Abstract Increasing the resilience of agricultural landscapes requires fundamental changes to the dominant commodity production model, including incorporating practices such as reduced tillage, cover cropping, and extended rotations that reduce soil disturbance while increasing biological diversity. Increasing farmer adoption of these conservation systems offers the potential to transform agriculture to a more vibrant, resilient system that protects soil, air, and water quality. Adoption of these resilience practices is not without significant challenges. This paper presents findings from a participatory effort to better understand these challenges and to develop solutions to help producers overcome them. Through repeated, facilitated discussions with farmers and agricultural and conservation professionals across the U.S. state of Michigan, we confronted the policy, economic, and structural barriers that are inhibiting broader adoption of conservation systems, as well as identified policies, programs, and markets that can support their adoption. What emerged was a complex picture and dynamic set of challenges at multiple spatial scales and across multiple domains. The primary themes emerging from these discussions were barriers and opportunities, including markets, social networks, human capital, and conservation programs. Exacerbating the technical, agronomic, and economic challenges farmers face at the farm level, there are a host of community constraints, market access and availability problems, climatic and environmental changes, and policies (governmental and corporate) that cross‐pressure farmers when it comes to making conservation decisions. Understanding these constraints is critical to developing programs, policies, and state and national investments that can drive adoption of conservation agriculture. 
    more » « less
  4. We develop the first spatially integrated economic-hydrological model of the western Lake Erie basin explicitly linking economic models of farmers' field-level Best Management Practice (BMP) adoption choices with the Soil and Water Assessment Tool (SWAT) model to evaluate nutrient management policy cost-effectiveness. We quantify tradeoffs among phosphorus reduction policies and find that a hybrid policy coupling a fertilizer tax with cost-share payments for subsurface placement is the most cost-effective, and when implemented with a 200% tax can achieve the stated policy goal of 40% reduction in nutrient loadings. We also find economic adoption models alone can overstate the potential for BMPs to reduce nutrient loadings by ignoring biophysical complexities. Key Words: Integrated assessment model; agricultural land watershed model; water quality; cost-share; conservation practice; nutrient management JEL Codes: H23, Q51, Q52, Q53 
    more » « less
  5. Effects of a changing climate on agricultural system productivity are poorly understood, and likely to be met with as yet undefined agricultural adaptations by farmers and associated business and governmental entities. The continued vitality of agricultural systems depends on economic conditions that support farmers’ livelihoods. Exploring the long-term effects of adaptations requires modeling agricultural and economic conditions to engage stakeholders upon whom the burden of any adaptation will rest. Here, we use a new freeware model FEWCalc (Food-Energy-Water Calculator) to project farm incomes based on climate, crop selection, irrigation practices, water availability, and economic adaptation of adding renewable energy production. Thus, FEWCalc addresses United Nations Global Sustainability Goals No Hunger and Affordable and Clean Energy. Here, future climate scenario impacts on crop production and farm incomes are simulated when current agricultural practices continue so that no agricultural adaptations are enabled. The model Decision Support System for Agrotechnology Transfer (DSSAT) with added arid-region dynamics is used to simulate agricultural dynamics. Demonstrations at a site in the midwest USA with 2008–2017 historical data and two 2018–2098 RCP climate scenarios provide an initial quantification of increased agricultural challenges under climate change, such as reduced crop yields and increased financial losses. Results show how this finding is largely driven by increasing temperatures and changed distribution of precipitation throughout the year. Without effective technological advances and operational and policy changes, the simulations show how rural areas could increasingly depend economically on local renewable energy, while agricultural production from arid regions declines by 50% or more. 
    more » « less