skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Framework for Online Estimation of High Frequency Converter Circuit Parameters
ABSTRACT In this paper a parameter estimation method of high frequency switching power converters is proposed. Parameters are estimated through measurement of basic circuit voltage and current quantities and using simple feed forward neural networks to establish correlations between circuit parameter variations and general converter performance. This allows the estimation of internal semiconductor device or passive component parameters that would be challenging to measure directly. This approach serves as a promising enabler for power converter digital twins and for converter health monitoring. The proposed framework is developed and verified for an LLC resonant converter. Parameter predictions achieved mean absolute errors below 4.12% and an average MAE of 1.57% for all parameters.  more » « less
Award ID(s):
2228873
PAR ID:
10656347
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1049
Date Published:
Journal Name:
Electronics Letters
Volume:
61
Issue:
1
ISSN:
0013-5194
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Broad-scale modeling and optimization play a vital role in the design of advanced power converters. Optimization is normally implemented via brute force iterations of design variables or utilizing metaheuristic techniques which are time consuming for a wide range of potential topologies, device implementations, and operating points. Recently, discrete time state-space modeling has shown merits in rapid analysis and generality to arbitrary circuit topologies but has not yet been utilized under rapid optimization techniques across multiple converter parameters. In this work, we investigate methods to incorporate rapid gradient-based optimization techniques to leverage discrete time state-space modeling and showcase the approach in the power converter design process. The method is validated on a 48-to-1V converter designed using the proposed techniques. 
    more » « less
  2. The proposed circuit aims to harvest energy from body heat, in which the thermal gradient is only a few degrees. The boost converter operating in a burst mode offers a high conversion ratio while minimizing power loss. Maximum power point tracking based on the fractional open circuit voltage method ensures that the proposed circuit can be applied for a variety of thermoelectric generators (TEGs) and TEG setups. The proposed circuit is designed and laid out in CMOS 0.25 μm technology. Post layout simulation results indicate the converter is able to boost input voltages as low as 50 mV to the regulated output of 3 V, while achieving peak efficiency of 81%. 
    more » « less
  3. null (Ed.)
    This paper presents a circuit for simultaneous reception of optical power and data using a solar cell. The circuit employs a switched-inductor boost DC-DC converter for energy harvesting and a low-power thresholding receiver for data reception. The thresholding data receiver comprises a current-sense resistor that monitors the current output of the solar cell, an instrumentation amplifier, a band-pass filter and a comparator. A system-level analysis of an optical communication system employing the proposed circuit is presented along with a circuit-level analysis and implementation. As a proof-of-concept, the proposed circuit for simultaneous power and data reception is implemented using off-the-shelf components and tested using a custom-built test setup. Measurement results, including harvested power, electronic noise and bit error rate (BER), are reported for a GaAs solar cell and a red LED light source. Results show that 223 μW of power are harvested by the DC-DC converter at a distance of 32.5 cm and a radiated power of 9.3 mW. At a modulation depth of 50% and a transmission speed of 2.5 kbps, a BER of 1.008×10^-3 is achieved. Measurement results reveal that the proposed solution exhibits a trade-off between harvested power, transmission speed and BER. 
    more » « less
  4. null (Ed.)
    The proposed circuit intends for an electromagnetic generator to harvest kinetic energy. A synchronous split-capacitor boost converter operating in boundary conduction mode (BCM) is proposed to efficiently convert the AC input to a DC output. BCM operation is uniquely achieved through zero current detection (ZCD) control of an AC input enabling impedance matching. The ZCD control offers simplicity over previously reported methodologies. To reduce power consumption and increase efficiency, the proposed circuit topology combines the rectifier and power stage while dynamically controlling the power stage. The proposed circuit is designed and laid out in 0.13 μm BiCMOS technology. Post layout simulations verify the operation of the proposed circuit. 
    more » « less
  5. This work presents a novel all-inclusive power electronic converter noise model comprised of both differential-mode (DM) and common-mode (CM) parasitic circuit components. Furthermore, a thorough modeling method and novel experiment-driven methodology to analyze the impact of the DM and CM circuit components on the resultant conducted emission electromagnetic interference in a single-phase power factor correction boost converter rated for 1 kW 120 VAC/400 VDC utilizing silicon-carbide MOSFETs is presented. This is achieved by predicting DM and CM noise corner frequencies and observing DM/CM noise corner frequencies in a novel half-bridge noise cell-based, all-inclusive converter parasitic circuit model. Frequency spectrum results find that eight DM noise corner frequencies are estimated by the proposed all-inclusive noise model with low average error of 6.45%, and the model further successfully identifies lumped CM capacitances present in the power converter system. 
    more » « less