Unfolder-based quasi-single-stage ac-dc power converter has been widely used for high-power electric vehicle (EV) charging systems for its high efficiency and power density. However, the resonance between the grid inductance (impedance) and the capacitors on the soft-dc-link of the converter impacts the system stability and significantly limits the system control bandwidth and dynamic response performance. A quasi-single-stage ac-dc converter with unfolder plus T-bridge series resonant converter (T-SRC) is studied in this work. The small-signal modeling and plant transfer function derivation of the T-SRC is presented in this paper. A damping filter design using the extra element theorem (EET) is then proposed to achieve high- bandwidth and stable operation of the quasi-single-stage ac-dc converter. Simulation and hardware results from an 18 kW module for high-power EV charging are provided to validate the proposed modeling and damping filter design.
more »
« less
Split-Capacitor Boost Converter Operating in Boundary Conduction Mode with Impedance Matching for Kinetic Energy Harvesting
The proposed circuit intends for an electromagnetic generator to harvest kinetic energy. A synchronous split-capacitor boost converter operating in boundary conduction mode (BCM) is proposed to efficiently convert the AC input to a DC output. BCM operation is uniquely achieved through zero current detection (ZCD) control of an AC input enabling impedance matching. The ZCD control offers simplicity over previously reported methodologies. To reduce power consumption and increase efficiency, the proposed circuit topology combines the rectifier and power stage while dynamically controlling the power stage. The proposed circuit is designed and laid out in 0.13 μm BiCMOS technology. Post layout simulations verify the operation of the proposed circuit.
more »
« less
- Award ID(s):
- 1704176
- PAR ID:
- 10203436
- Date Published:
- Journal Name:
- 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS)
- Page Range / eLocation ID:
- 203 to 207
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Unfolding-based single-stage ac-dc converters offer benefits in terms of efficiency and power density due to the low-frequency operation of the Unfolder, resulting in negligible switching losses. However, the operation of the Unfolder results in time-varying dc voltages at the input of the subsequent dc-dc converter, complicating its soft-switching analysis. The complication is further enhanced due to the nonlinear nature of the output capacitance ( Coss ) of MOSFETs employed in the dc-dc converter. Furthermore, unlike two-stage topologies with a constant dc-link voltage, as seen in high-frequency grid-tied converters, grid voltage fluctuations also impact the dc input voltages of the dc-dc converter in unfolding-based systems. This work comprehensively analyzes the soft-switching phenomenon in the T-type primary bridge-based dc-dc converter used in unfolding-based topologies, considering all the aforementioned challenges. An energy-based methodology is proposed to determine the minimum zero-voltage switching (ZVS) current and ZVS time during various switching transitions of the T-type bridge. It is shown that the existing literature on the ZVS analysis of the T-type bridge-based resonant dc-dc converter, relying solely on capacitive energy considerations, substantially underestimates the required ZVS current values, with errors reaching up to 50%. The proposed analysis is verified through both simulation and hardware testing. The hardware testing is conducted on a 20-kW 3- ϕ unfolding-based ac-dc converter designed for high-power electric vehicle battery charging applications. The ZVS analysis is verified at various grid angles with the proposed analysis ensuring a complete ZVS operation of the ac-dc system throughout the grid cycle.more » « less
-
Abstract Josephson-CMOS hybrid memory leverages the high speed and low power operation of single-flux quantum logic and the high integration densities of CMOS technology. One of the commonly used type of interface circuits in Josephson-CMOS memory is a Suzuki stack, which is a latching high-voltage driver circuit. Suzuki stack circuits are typically powered by an AC bias voltage that has several limitations such as synchronization and coupling effects. To address these issues, a novel DC-biased Suzuki stack circuit is proposed in this paper. As compared to a conventional AC-biased Suzuki stack circuit, the proposed DC-biased design can provide similar output voltage levels and parameter margins, approximately two times higher operating frequency, and three orders of magnitude lower heat load of bias cables.more » « less
-
MMC-based back-to-back (B2B) converters are promising for hybrid AC/DC transmission systems when integrating large scale PV sources. This paper proposes a novel configuration for hybrid AC transmission systems with B2B converters and multi-terminal direct current (MTDC) operation which facilitates the integration of PV energy and enhances the system stability and reliability. This is achieved by an advanced interconnection with two operation modes: 1-A bi-directional power flow via AC connections, and 2- Direct active power injection to the MTDC from PV source. Conventional outer, inner and capacitor voltage balancing control systems are utilized in this study for regulating the currents and voltages of B2B converter. Also, The Perturb and observe (P and O) technique is implemented for obtaining maximum power point tracking (MPPT) of the PV generation considering a dc-dc boost converter. The efficacy of this proposed configuration is verified through time-domain simulations carried out by MATLAB/SIMULINK.more » « less
-
null (Ed.)This paper presents the integration of an AC-DC rectifier and a DC-DC boost converter circuit designed in 180 nm CMOS process for ultra-low frequency (<; 10 Hz) energy harvesting applications. The proposed rectifier is a very low voltage CMOS rectifier circuit that rectifies the low-frequency signal of 100-250 mV amplitude and 1-10 Hz frequency into DC voltage. In this work, the energy is harvested from the REWOD (reverse electrowetting-on-dielectric) generator, which is a reverse electrowetting technique that converts mechanical vibrations to electrical energy. The objective is to develop a REWOD-based self-powered motion (such as walking, running, jogging, etc.) tracking sensors that can be worn, thus harvesting energy from regular activities. To this end, the proposed circuits are designed in such a way that the output from the REWOD is rectified and regulated using a DC-DC converter which is a 5-stage cross-coupled switching circuit. Simulation results show a voltage range of 1.1 V-2.1 V, i.e., 850-1200% voltage conversion efficiency (VCE) and 30% power conversion efficiency (PCE) for low input signal in the range 100-250 mV in the low-frequency range. This performance verifies the integration of the rectifier and DC-DC boost converter which makes it highly suitable for various motion-based energy harvesting applications.more » « less
An official website of the United States government

