skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 5, 2026

Title: Vertically Integrated Projects, STEM Identity, and Self-Perceived Competence
This study examined the impact of a Vertically IntegratedProjects (VIP) program on engineering identity,self-efficacy, mindset, intentions to stay in engineering,and self-perceived science, technology, engineering, andmathematics (STEM) knowledge/skills through a pre/postsurvey design with 22 students. Results indicated nosignificant changes in identity, self-efficacy, mindset, orintentions to stay in engineering; however, participantsreported increased self-perceived understanding of howtechnical solutions are used in an applied context. Notably,most participants acknowledged that VIP contributedto their development across various skills, particularly incommunication and teamwork. These findings suggest thatwhereas impacts on identity and related measures wereminimal, VIP effectively enhanced students’ perceptionsof their technical and collaborative abilities, highlightingthe program’s potential for fostering both technical andsoft skills.  more » « less
Award ID(s):
2120819
PAR ID:
10656452
Author(s) / Creator(s):
; ;
Publisher / Repository:
Council on Undergraduate Research
Date Published:
Journal Name:
Scholarship and Practice of Undergraduate Research
Volume:
8
Issue:
3
ISSN:
2476-101X
Page Range / eLocation ID:
32 to 37
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Challenge or problem-based learning help students develop deeper content understanding and enhanced STEM skillsets and provide opportunities for learning across multiple contexts. Educational interventions that include active learning, mentoring, and role modeling are particularly important in recruiting and retaining female and minority students in STEM. With this framework in mind, we implemented the Vertically-Integrated Projects (VIP) model at a public urban research university in the 2022-2023 academic year with the goal of helping participating students increase engineering and STEM identity and other psychosocial outcomes. This paper reports the results from the first year of our VIP program. At the beginning and end of the academic year, participants completed measures of engineering identity; engineering self-efficacy; engineering mindset; intention to remain in the engineering major; intention to have a career in engineering; and STEM professional identity. Wilcoxon Signed Ranks (N=10) tests showed no statistically significant differences on any of these measures. Participants also responded to 20 items assessing their perceptions of their level of knowledge and skills in a variety of areas relevant to their experience in the VIP program. Wilcoxon Signed Ranks tests (N=10) revealed some statistically significant differences between pre- and post-test. Specifically, students tended to see themselves as having greater knowledge or skills in planning a long-term project, communicating technical concepts and designs to others, designing systems, components, or processes to meet practical or applied needs, understanding computer hardware and systems, working on a multidisciplinary team, and making ethical decisions in engineering/research. Finally, at the end of the Spring semester, participants rated the extent to which they perceived the VIP program helped them to develop their skills on the same 20 items. Most participants believed the VIP program helped them to develop each skill either somewhat or a great deal. Overall, while participation in the VIP program did not influence student engineering identity, self-efficacy, mindset, or major/career intentions, it was associated with increased self-perceived abilities on six specific skills. Additionally, most participants agreed that the VIP program helped them develop 20 skills at least “somewhat.” 
    more » « less
  2. The purpose of this work in progress research paper is to examine the differences in leadership self-efficacy among engineering undergraduates and their peers in other fields, and understand how leadership self-concept changes from the first through the fourth year of college. This study conceptualizes engineering formation as a professional identity development process, cultivated through participation in engineering communities of practice. The guiding hypothesis is that experiences that contribute to engineering identity, which focus on the development of technical mastery, conflict with the development of leadership self-concept. This work presents preliminary analysis of the differences between engineering undergraduates and their peers with regard to their leadership experiences during college. Preliminary results reveal a complex picture of the differences between engineering students and their peers in other STEM and non-STEM fields. Engineering students have the highest leadership self-efficacy of all three groups by the end of the fourth year of college, which mirrors differences in self-rated leadership skills at college entry. However, differences in leadership experiences during college vary among these three groups, and not consistently with their leadership self-efficacy. Engineers are least likely to participate in a leadership training during college and to value becoming a leader after college. Among engineering students, students who participate in internships, undergraduate research, and collaborate with peers report higher leadership. Leadership is unrelated to plans to enter engineering as a career. 
    more » « less
  3. In order to lead the social process required to solve society’s grandest challenges and ensure that the capabilities of an expanded engineering workforce are successfully harnessed, new engineers must be more than just technical experts, they must also be technical leaders. Thankfully, greater numbers of engineering educators are recognizing this need and are consequently establishing engineering leadership certificates, minors, and even full degree programs through centers at universities throughout the country. However, for these programs to reach their full potential, engineering educators must be successful in integrating leadership into the very identity of engineers. This study seeks to better understand the relationship between engineering identity and leadership, so tools can be developed that enable engineering educators to more effectively integrate leadership into an engineering identity. This paper explores this relationship using a national sample of 918 engineering students who participated in the 2013 College Senior Survey (CSS). The CSS is administered by the Higher Education Research Institute (HERI) at UCLA to college students at the end of their fourth year of college; data from the CSS are then matched to students’ prior responses on the 2009 Freshman Survey (TFS), which was administered when they first started college, to create a longitudinal sample. Using a leadership construct developed by HERI as the outcome variable, this work utilizes Hierarchical Linear Modelling (HLM) to examine the impact of engineering identity and a host of other factors shown to be important in college student development on leadership. HLM is especially appropriate since individual student cases are grouped by schools, and predictor variables include both student-level and institution-level variables. The leadership construct, referred to as leadership self-efficacy in this work, includes self-rated growth in leadership ability, self-rating of leadership ability relative to one’s peers, participation in a leadership role and/or leadership training, and perceived effectiveness leading an organization. The primary independent variable of interest was a factor measuring engineering identity comprised of items available on both the TFS and CSS instruments. Including this measure of engineering identity from two different time periods in the model provides the relationship between engineering identity in the fourth year and leadership self-efficacy, controlling for engineering identity in the first year as a pretest. Statistically significant results were found across each of the areas tested, including the fourth-year engineering identity factor as well as several collegiate experiences, pre-college experiences, major, and institutional variables. Taken together, these results present a nuanced picture of what matters to predicting leadership outcomes for undergraduate engineering students. For example, while engineering identity is a significant positive predictor of the leadership construct, computer engineers score lower than mechanical engineers on leadership, while interacting with faculty appears to enhance leadership self-efficacy. 
    more » « less
  4. This full paper presents the Collaborative Active Learning and Inclusiveness (CALI) inventory, and an analytical model using the CALI inventory, demographic data, mindset surveys, and knowledge mastery assessment, to explore relationships between classroom climate and student experiences. The CALI inventory enables the investigation of the impact of the student experience in an active learning classroom by distinguishing the factors that characterize the structure, social learning, and inclusive practices. The Structure Index includes components related to course setup, organization, assessment, grading, and communications. The Sociality Index includes components related to opportunities for students to interact with each other. The Inclusiveness Index includes components related to how the instructor communicates a sense of belonging to the students through a growth mindset and inclusive policies and practices. A CS Mindset Instrument was developed based on research that measured students' self-efficacy by evaluating the extent of variation in their self-perceived ability to accomplish a task, sense of belonging in computing, and professional identity development. Demographic data is collected that allows for an analysis using an intersectional lens to acknowledge the complexity of social and cultural contexts. The knowledge and mastery assessments capture changes in competency through pre-post mastery quizzes. The combination of CALI with other instruments, including those that characterize student mindset, identity, and levels of mastery, enables investigation of how various practices of inclusive and collaborative active learning have differential effects on students with different identities in computer science. 
    more » « less
  5. In this Great Ideas for Teaching Students (GIFTS) paper, we offer learning outcomes that we are beginning to recognize from our eight-week research experience for undergraduates (REU). There are four characteristics that have been found to be essential to success in Science, Technology, Engineering, and Mathematics (STEM) fields: a strong sense of STEM identity, scientific self-efficacy, a sense of belonging, and a psychological sense of community. This is especially true for first-year and transfer students pursuing STEM undergraduate degrees. A variety of studies have been published that go into detail about why these characteristics in particular have such a significant effect on student performance and retention. This paper will present Critical Self-Reflection as a practical way to integrate development of these characteristics into student research experiences to foster experiential learning that goes beyond increasing technical skills. STEM students are not often trained to critically self-reflect on their experiences in classroom and research settings. An inability for undergraduates to reflect intentionally on their experiences creates greater risk for attrition from STEM disciplines. Curated reflective experiences in collaborative learning settings can offer professional development opportunities to enhance students’ social and technical communication skills. There are four phases within the scaffolded Critical Self-Reflection framework: Learning to Reflect, Reflection for Action, Reflection in Action, and Reflection on Action. When applying the evidence-based practice, STEM undergraduate researchers describe their perceptions via three activities: creating a legacy statement, participating in facilitated dialogue sessions, and writing curated reflection journal entries within an REU. Through critical self-reflection exercises, we are beginning to find growth of first-year and transfer STEM undergraduates in the following areas: understanding of their role in the lab; confidence in their researcher identity; expression of agency; observation and communication skills; and intentionality for action. Participating in this self-reflection allows students to make meaning of their experience enabling them to hone the aforementioned characteristics that creates a pathway from their undergraduate experience to undergraduate degree completion, graduate degree attainment, and to the STEM workforce. 
    more » « less