This article details the motivation and design of an experiment to investigate the effects of artificially intelligent cognitive assistive agents on coordination efforts in manufacturing teams. As automation solutions become more accessible and products rapidly grow in complexity, there are significant calls to leverage abilities of both artificial agents and human workers to maximize team functioning and product output. As such, we propose an experimental design where we introduce a cognitive agent with two levels of autonomy (low, and high) into a team of participants during an assembly task. We hypothesized that cognitive assistive technologies would enhance coordination within assembly teams, leading to higher productivity and reduced errors, with initial data suggesting trends in support of these hypotheses. We seek to demonstrate the value of cognitive agents in augmenting human workers, allowing manufacturers to see the benefit of increased productivity while retaining value and relevance of human labor in the face of technological development.
more »
« less
A Novel Experiment Design for Studying Multiple Cognitive Factors in Conditionally Automated Driving Contexts
Development of responsive automation necessitates a framework for studying human-automation interactions in a broad range of operating conditions. This study uses a novel experiment design involving multiple binary perturbations in different stimuli to elicit measurable changes in cognitive factors that affect human-decision making during conditionally-automated (SAE Level 3) driving: trust in automation, mental workload, self-confidence, and risk perception. To infer changes in these factors, psychophysiological metrics such as heart rate variability and galvanic skin response, behavioral metrics such as eye gaze and reliance on automation, and self-reports were collected. Findings from statistical tests revealed significant changes, particularly in psychophysiological and behavioral metrics, for some treatments. However, other treatments did not elicit a significant change, highlighting the complexities of a between-subject experiment design with variations in multiple independent variables. Findings also underscore the importance of collecting heterogeneous human data to infer changes in cognitive factors during interactions with automation.
more »
« less
- Award ID(s):
- 2145827
- PAR ID:
- 10656737
- Publisher / Repository:
- SAGE Journals
- Date Published:
- Journal Name:
- Proceedings of the Human Factors and Ergonomics Society Annual Meeting
- Volume:
- 68
- Issue:
- 1
- ISSN:
- 1071-1813
- Page Range / eLocation ID:
- 940 to 946
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Multiple human behaviors improve early in life, peaking in young adulthood, and declining thereafter. Several properties of brain structure and function progress similarly across the lifespan. Cognitive and neuroscience research has approached aging primarily using associations between a few behaviors, brain functions, and structures. Because of this, the multivariate, global factors relating brain and behavior across the lifespan are not well understood. We investigated the global patterns of associations between 334 behavioral and clinical measures and 376 brain structural connections in 594 individuals across the lifespan. A single-axis associated changes in multiple behavioral domains and brain structural connections (r = 0.5808). Individual variability within the single association axis well predicted the age of the subject (r = 0.6275). Representational similarity analysis evidenced global patterns of interactions across multiple brain network systems and behavioral domains. Results show that global processes of human aging can be well captured by a multivariate data fusion approach.more » « less
-
Autonomous systems that can assist humans with increasingly complex tasks are becoming ubiquitous. Moreover, it has been established that a human’s decision to rely on such systems is a function of both their trust in the system and their own self-confidence as it relates to executing the task of interest. Given that both under- and over-reliance on automation can pose significant risks to humans, there is motivation for developing autonomous systems that could appropriately calibrate a human’s trust or self-confidence to achieve proper reliance behavior. In this article, a computational model of coupled human trust and self-confidence dynamics is proposed. The dynamics are modeled as a partially observable Markov decision process without a reward function (POMDP/R) that leverages behavioral and self-report data as observations for estimation of these cognitive states. The model is trained and validated using data collected from 340 participants. Analysis of the transition probabilities shows that the proposed model captures the probabilistic relationship between trust, self-confidence, and reliance for all discrete combinations of high and low trust and self-confidence. The use of the proposed model to design an optimal policy to facilitate trust and self-confidence calibration is a goal of future work.more » « less
-
Abstract In the realm of robotics and automation, robot teleoperation, which facilitates human–machine interaction in distant or hazardous settings, has surged in significance. A persistent issue in this domain is the delays between command issuance and action execution, causing negative repercussions on operator situational awareness, performance, and cognitive load. These delays, particularly in long-distance operations, are difficult to mitigate even with the most advanced computing advancements. Current solutions mainly revolve around machine-based adjustments to combat these delays. However, a notable lacuna remains in harnessing human perceptions for an enhanced subjective teleoperation experience. This paper introduces a novel approach of sensory manipulation for induced human adaptation in delayed teleoperation. Drawing from motor learning and rehabilitation principles, it is posited that strategic sensory manipulation, via altered sensory stimuli, can mitigate the subjective feeling of these delays. The focus is not on introducing new skills or adapting to novel conditions; rather, it leverages prior motor coordination experience in the context of delays. The objective is to reduce the need for extensive training or sophisticated automation designs. A human-centered experiment involving 41 participants was conducted to examine the effects of modified haptic cues in teleoperations with delays. These cues were generated from high-fidelity physics engines using parameters from robot-end sensors or physics engine simulations. The results underscored several benefits, notably the considerable reduction in task time and enhanced user perceptions about visual delays. Real-time haptic feedback, or the anchoring method, emerged as a significant contributor to these benefits, showcasing reduced cognitive load, bolstered self-confidence, and minimized frustration. Beyond the prevalent methods of automation design and training, this research underscores induced human adaptation as a pivotal avenue in robot teleoperation. It seeks to enhance teleoperation efficacy through rapid human adaptation, offering insights beyond just optimizing robotic systems for delay compensations.more » « less
-
In this work, we present CogBeacon, a multi-modal dataset designed to target the effects of cognitive fatigue in human performance. The dataset consists of 76 sessions collected from 19 male and female users performing different versions of a cognitive task inspired by the principles of the Wisconsin Card Sorting Test (WCST), a popular cognitive test in experimental and clinical psychology designed to assess cognitive flexibility, reasoning, and specific aspects of cognitive functioning. During each session, we record and fully annotate user EEG functionality, facial keypoints, real-time self-reports on cognitive fatigue, as well as detailed information of the performance metrics achieved during the cognitive task (success rate, response time, number of errors, etc.). Along with the dataset we provide free access to the CogBeacon data-collection software to provide a standardized mechanism to the community for collecting and annotating physiological and behavioral data for cognitive fatigue analysis. Our goal is to provide other researchers with the tools to expand or modify the functionalities of the CogBeacon data-collection framework in a hardware-independent way. As a proof of concept we show some preliminary machine learning-based experiments on cognitive fatigue detection using the EEG information and the subjective user reports as ground truth. Our experiments highlight the meaningfulness of the current dataset, and encourage our efforts towards expanding the CogBeacon platform. To our knowledge, this is the first multi-modal dataset specifically designed to assess cognitive fatigue and the only free software available to allow experiment reproducibility for multi-modal cognitive fatigue analysis.more » « less
An official website of the United States government

