skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2026

Title: Survival of Asteroid-sized Debris from the Moon-forming Impactor in Earth’s Deep Mantle with Implications for Its Solar System Provenance
Abstract As the largest terrestrial planet in the solar system, Earth experienced a prolonged major accretion, ending with the Moon-forming giant impact (MFGI), whereas the direct evidence and origin of the impactor Theia remain elusive. Recent computational studies indicate that parts of the impactor Theia mantle may persist above Earth’s core–mantle boundary as the large low-velocity provinces (LLVPs), yet it remains unclear how these results were affected by the initial size of Theia fragments after the MFGI. Here I explore such influence in whole-mantle convection simulations, assuming that the Theia debris size follows the size distribution of the main-belt asteroids, which provides a natural estimation of collision debris for the ill-constrained parameter during extreme impacts. The results demonstrate that the asteroid-sized Theia debris can survive Earth’s 4.5-billion-year convective history as large-scale thermochemical structures resembling the seismically observed LLVPs. The results also demonstrate that rheologically strong Theia fragments are more capable of long-term preservation compared to those with weaker compositions. The inferred viscosity of Theia fragments aligns with that proposed for LLVPs from noble gas isotope evidence for a dry plume mantle source and agrees with global mantle attenuation constraints from seismic normal modes. These findings provide insight into the physical mechanism of preserving ancient geochemical signatures in Earth’s mantle, support an inner solar system provenance for the impactor Theia, and further help explain the isotopic homogeneity between Earth and the Moon.  more » « less
Award ID(s):
2330810
PAR ID:
10656859
Author(s) / Creator(s):
Publisher / Repository:
American Astronomical Society
Date Published:
Journal Name:
The Planetary Science Journal
Volume:
6
Issue:
12
ISSN:
2632-3338
Page Range / eLocation ID:
294
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Composition of terrestrial planets records planetary accretion, core–mantle and crust–mantle differentiation, and surface processes. Here we compare the compositional models of Earth and Mars to reveal their characteristics and formation processes. Earth and Mars are equally enriched in refractory elements (1.9 × CI), although Earth is more volatile-depleted and less oxidized than Mars. Their chemical compositions were established by nebular fractionation, with negligible contributions from post-accretionary losses of moderately volatile elements. The degree of planetary volatile element depletion might correlate with the abundances of chondrules in the accreted materials, planetary size, and their accretion timescale, which provides insights into composition and origin of Mercury, Venus, the Moon-forming giant impactor, and the proto-Earth. During its formation before and after the nebular disk’s lifetime, the Earth likely accreted more chondrules and less matrix-like materials than Mars and chondritic asteroids, establishing its marked volatile depletion. A giant impact of an oxidized, differentiated Mars-like (i.e., composition and mass) body into a volatile-depleted, reduced proto-Earth produced a Moon forming debris ring with mostly a proto-Earth’s mantle composition. Chalcophile and some siderophile elements in the silicate Earth added by the Mars-like impactor were extracted into the core by a sulfide melt (~0.5% of the mass of the Earth’s mantle). In contrast, the composition of Mars indicates its rapid accretion of lesser amounts of chondrules under nearly uniform oxidizing conditions. Mars’ rapid cooling and early loss of its dynamo likely led to the absence of plate tectonics and surface water, and the present-day low surface heat flux. These similarities and differences between the Earth and Mars made the former habitable and the other inhospitable to uninhabitable. 
    more » « less
  2. Abstract Magma oceans were once ubiquitous in the early solar system, setting up the initial conditions for different evolutionary paths of planetary bodies. In particular, the redox conditions of magma oceans may have profound influence on the redox state of subsequently formed mantles and the overlying atmospheres. The relevant redox buffering reactions, however, remain poorly constrained. Using first-principles simulations combined with thermodynamic modeling, we show that magma oceans of Earth, Mars, and the Moon are likely characterized with a vertical gradient in oxygen fugacity with deeper magma oceans invoking more oxidizing surface conditions. This redox zonation may be the major cause for the Earth’s upper mantle being more oxidized than Mars’ and the Moon’s. These contrasting redox profiles also suggest that Earth’s early atmosphere was dominated by CO2and H2O, in contrast to those enriched in H2O and H2for Mars, and H2and CO for the Moon. 
    more » « less
  3. Abstract A giant-impact origin for the Moon is generally accepted, but many aspects of lunar formation remain poorly understood and debated. Ćuk et al. proposed that an impact that left the Earth–Moon system with high obliquity and angular momentum could explain the Moon’s orbital inclination and isotopic similarity to Earth. In this scenario, instability during the Laplace Plane transition, when the Moon’s orbit transitions from the gravitational influence of Earth’s figure to that of the Sun, would both lower the system’s angular momentum to its present-day value and generate the Moon’s orbital inclination. Recently, Tian & Wisdom discovered new dynamical constraints on the Laplace Plane transition and concluded that the Earth–Moon system could not have evolved from an initial state with high obliquity. Here we demonstrate that the Earth–Moon system with an initially high obliquity can evolve into the present state, and we identify a spin–orbit secular resonance as a key dynamical mechanism in the later stages of the Laplace Plane transition. Some of the simulations by Tian & Wisdom did not encounter this late secular resonance, as their model suppressed obliquity tides and the resulting inclination damping. Our results demonstrate that a giant impact that left Earth with high angular momentum and high obliquity (θ> 61°) is a promising scenario for explaining many properties of the Earth–Moon system, including its angular momentum and obliquity, the geochemistry of Earth and the Moon, and the lunar inclination. 
    more » « less
  4. We combine calculations of pebble accretion and accretion by large and giant impacts to quantify the effects of pebbles on the hafnium-tungsten system during Earth formation. Our models include an early pebble accretion phase lasting 4–6 Myr with a global magma ocean and core segregation, a 20–50 Myr phase of large impacts, and a late giant impact representing the Moon-forming event. We consider various mass additions during each accretion phase, vary the metal-silicate partition coefficient for tungsten over a wide range, and track (180)Hf, (182)Hf, (182)W and (184)W in proto-Earth and impactor models over time using standard chondritic values for these isotopes in the pebbles. We find that an early phase of pebble accretion is compatible with the tungsten anomaly of Earth's early mantle as well as the present-day Hf/W ratio, but under restricted conditions. In particular, the pebble mass of proto-Earth is limited to 0.7 Earth masses or less, the average metal-silicate partition coefficient for tungsten is 30–50, and because the metal-silicate equilibration efficiency for giant impacts is low, the equilibration efficiency must be high for the large impactors. 
    more » « less
  5. Abstract It is generally accepted that the Moon accreted from the disk formed by an impact between the proto-Earth and impactor, but its details are highly debated. Some models suggest that a Mars-sized impactor formed a silicate melt-rich (vapor-poor) disk around Earth, whereas other models suggest that a highly energetic impact produced a silicate vapor-rich disk. Such a vapor-rich disk, however, may not be suitable for the Moon formation, because moonlets, building blocks of the Moon, of 100 m–100 km in radius may experience strong gas drag and fall onto Earth on a short timescale, failing to grow further. This problem may be avoided if large moonlets (≫100 km) form very quickly by streaming instability, which is a process to concentrate particles enough to cause gravitational collapse and rapid formation of planetesimals or moonlets. Here, we investigate the effect of the streaming instability in the Moon-forming disk for the first time and find that this instability can quickly form ∼100 km-sized moonlets. However, these moonlets are not large enough to avoid strong drag, and they still fall onto Earth quickly. This suggests that the vapor-rich disks may not form the large Moon, and therefore the models that produce vapor-poor disks are supported. This result is applicable to general impact-induced moon-forming disks, supporting the previous suggestion that small planets (<1.6R) are good candidates to host large moons because their impact-induced disks would likely be vapor-poor. We find a limited role of streaming instability in satellite formation in an impact-induced disk, whereas it plays a key role during planet formation. 
    more » « less