Driver reliance on automated vehicles (AV) is a critical component of safety particularly during high-risk traffic scenarios. Factors that influence reliance, including trust, situation awareness, fatigue, and demographics, have been independently explored; however, few analyses have investigated predicting AV reliance and compared factors comprehensively. The goals of this study were to develop a random forest (RF) model to predict reliance and to analyze the importance of factors for reliance decisions. We leveraged data from a driving simulation study where participants encountered four traffic events including responding to an illegal vehicle crossing, managing construction zones, stopping at a vandalized stop sign, and a pedestrian detection task. The dataset included reliance decisions and subjective assessments of dispositional trust, situational trust, fatigue, and workload. An RF model fit to the dataset using cross validation achieved an average AUC of 0.81 and accuracy of 0.77 and situational trust emerged as the most influential predictor.
more »
« less
Longitudinal Effects of External Communication of Automated Vehicles in the USA and Germany: A Comparative Study in Virtual Reality and Via a Browser
Automated vehicles are expected to communicate with vulnerable road users. In two longitudinal studies, we investigated the impact of external Human-Machine Interfaces (eHMI) on pedestrian safety and behavior when interacting with automated vehicles. Utilizing LED strips for communication, these studies probed various factors, including mixed traffic scenarios, presence of eHMIs, and being from Germany or the USA. Our experimental approaches included a Virtual Reality study with 24 participants in Germany and an online study with 28 participants from the USA and Germany. Results revealed that repeated interactions with automated vehicles featuring eHMI significantly enhance pedestrian Trust, Understanding, and perceived safety, while simultaneously diminishing mental workload. Notably, the positive effects of eHMI were consistent across the two countries. US participants exhibited a tendency for higher risk-taking in crossing situations and reported lower mental workloads, underscoring the importance of considering cultural nuances in designing eHMI systems for mixed-traffic environments.
more »
« less
- Award ID(s):
- 2212431
- PAR ID:
- 10656931
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
- Volume:
- 8
- Issue:
- 4
- ISSN:
- 2474-9567
- Page Range / eLocation ID:
- 1 to 33
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Objective This study investigated drivers’ subjective feelings and decision making in mixed traffic by quantifying driver’s driving style and type of interaction. Background Human-driven vehicles (HVs) will share the road with automated vehicles (AVs) in mixed traffic. Previous studies focused on simulating the impacts of AVs on traffic flow, investigating car-following situations, and using simulation analysis lacking experimental tests of human drivers. Method Thirty-six drivers were classified into three driver groups (aggressive, moderate, and defensive drivers) and experienced HV-AV interaction and HV-HV interaction in a supervised web-based experiment. Drivers’ subjective feelings and decision making were collected via questionnaires. Results Results revealed that aggressive and moderate drivers felt significantly more anxious, less comfortable, and were more likely to behave aggressively in HV-AV interaction than in HV-HV interaction. Aggressive drivers were also more likely to take advantage of AVs on the road. In contrast, no such differences were found for defensive drivers indicating they were not significantly influenced by the type of vehicles with which they were interacting. Conclusion Driving style and type of interaction significantly influenced drivers’ subjective feelings and decision making in mixed traffic. This study brought insights into how human drivers perceive and interact with AVs and HVs on the road and how human drivers take advantage of AVs. Application This study provided a foundation for developing guidelines for mixed transportation systems to improve driver safety and user experience.more » « less
-
Vehicle-to-pedestrian communication could significantly improve pedestrian safety at signalized intersections. However, it is unlikely that pedestrians will typically be carrying a low latency communication-enabled device with an activated pedestrian safety application in their hand-held device all the time. Because of this, multiple traffic cameras at a signalized intersection could be used to accurately detect and locate pedestrians using deep learning, and broadcast safety alerts related to pedestrians to warn connected and automated vehicles around signalized intersections. However, the unavailability of high-performance roadside computing infrastructure and the limited network bandwidth between traffic cameras and the computing infrastructure limits the ability of real-time data streaming and processing for pedestrian detection. In this paper, we describe an edge computing-based real-time pedestrian detection strategy that combines a pedestrian detection algorithm using deep learning and an efficient data communication approach to reduce bandwidth requirements while maintaining high pedestrian detection accuracy. We utilize a lossy compression technique on traffic camera data to determine the tradeoff between the reduction of the communication bandwidth requirements and a defined pedestrian detection accuracy. The performance of the pedestrian detection strategy is measured in relation to pedestrian classification accuracy with varying peak signal-to-noise ratios. The analyses reveal that we detect pedestrians by maintaining a defined detection accuracy with a peak signal-to-noise ratio 43 dB while reducing the communication bandwidth from 9.82 Mbits/sec to 0.31 Mbits/sec, a 31× reduction.more » « less
-
The safety impacts of cooperative platooning in mixed traffic consisting of human-driven, con-nected, and connected-automated vehicles were evaluated. The cooperative platooning in mixed traffic control algorithm evaluated is the Cooperative Adaptive Cruise Control with unconnected Vehicle (CACCu) with an unconnected vehicle. Its safety and string stability were evaluated using a high-fidelity simulation based on real-world vehicle trajectories. An Adaptive Cruise Control (ACC) algorithm was selected for comparison purposes. The results indicate that the cooperative platooning in mixed traffic control algorithm (CACCu) maintains string stability and performs more safely than the ACC.more » « less
-
Autonomous vehicles are expected to improve road safety and efficiency in future transportation systems. A driving simulator study was designed to identify driving styles and the cooperation between human drivers and other AVs. The study captured driver’s following behavior in a fully autonomous driving environment at unsignalized intersections. Participants were asked to make a series of maneuvers (straight through intersection, left turn, and right turn) in two different speed conditions (30, 40 mph) and two different traffic density conditions (with or without other traffic). Analysis of Variance showed that drivers had a significantly larger deviation (defined as the area between two trajectories) during left turn maneuvers when they were traveling at higher speeds. Moreover, the first turning operation had smaller deviation than the second turning operation. The findings have implications for the design of driver-assistance guidance systems in future mixed autonomous and non-autonomous traffic flows.more » « less
An official website of the United States government

