skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fractals in Seeded Tile Automata
This work fully characterizes fractal generation in the seeded Tile Automata model (seeded TA), a model similar to the abstract Tile Assembly model (aTAM) with the added ability for adjacent tiles to change states. Under these assumptions, we first show that all discrete self-similar fractals (DSSFs) with feasible generators are strictly buildable at scale 1 and temperature 1 in seeded TA. We then show that these results imply the existence of a single seeded TA system Γ that can strictly build any DSSF infinitely at scale 1 and temperature 1.  more » « less
Award ID(s):
2329918
PAR ID:
10657116
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Meeks, Kitty; Scheideler, Christian
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Volume:
330
ISSN:
1868-8969
Page Range / eLocation ID:
14:1-14:17
Subject(s) / Keyword(s):
self-assembly tile automata fractals Theory of computation
Format(s):
Medium: X Size: 17 pages; 806085 bytes Other: application/pdf
Size(s):
17 pages 806085 bytes
Sponsoring Org:
National Science Foundation
More Like this
  1. Meeks, Kitty; Scheideler, Christian (Ed.)
    The Tile Automata (TA) model describes self-assembly systems in which monomers can build structures and transition with an adjacent monomer to change their states. This paper shows that seeded TA is a non-committal intrinsically universal model of self-assembly. We present a single universal Tile Automata system containing approximately 4600 states that can simulate (a) the output assemblies created by any other Tile Automata system Γ, (b) the dynamics involved in building Γ’s assemblies, and (c) Γ’s internal state transitions. It does so in a non-committal way: it preserves the full non-deterministic dynamics of a tile’s potential attachment or transition by selecting its state in a single step, considering all possible outcomes until the moment of selection. The system uses supertiles, each encoding the complete system being simulated. The universal system builds supertiles from its seed, each representing a single tile in Γ, transferring the information to simulate Γ to each new tile. Supertiles may also asynchronously transition states according to the rules of Γ. This result also implies IU for pairwise asynchronous Cellular Automata. 
    more » « less
  2. Tile self-assembly is a well-studied theoretical model of geometric computation based on nanoscale DNA-based molecular systems. Here, we study the two-handed tile self-assembly model or 2HAM at general temperatures, in contrast with prior study limited to small constant temperatures, leading to surprising results. We obtain constructions at larger (i.e., hotter) temperatures that disprove prior conjectures and break well-known bounds for low-temperature systems via new methods of temperature-encoded information. In particular, for all n∈N , we assemble n×n squares using O(2log∗n) tile types, thus breaking the well-known information theoretic lower bound of Rothemund and Winfree. Using this construction, we then show how to use the temperature to encode general shapes and construct them at scale with O(2log∗K) tiles, where K denotes the Kolmogorov complexity of the target shape. Following, we refute a long-held conjecture by showing how to use temperature to construct n×O(1) rectangles using only O(logn/loglogn) tile types. We also give two small systems to generate nanorulers of varying length based solely on varying the system temperature. These results constitute the first real demonstration of the power of high temperature systems for tile assembly in the 2HAM. This leads to several directions for future explorations which we discuss in the conclusion. 
    more » « less
  3. This paper answers a long-standing open question in tile-assembly theory, namely that it is possible to strictly assemble discrete self-similar fractals (DSSFs) in the abstract Tile-Assembly Model (aTAM). We prove this in 2 separate ways, each taking advantage of a novel set of tools. One of our constructions shows that specializing the notion of a quine, a program which prints its own output, to the language of tile-assembly naturally induces a fractal structure. The other construction introduces self-describing circuits as a means to abstractly represent the information flow through a tile-assembly construction and shows that such circuits may be constructed for a relative of the Sierpinski carpet, and indeed many other DSSFs, through a process of fixed-point iteration. This later result, or more specifically the machinery used in its construction, further enable us to provide a polynomial time procedure for deciding whether any given subset of ℤ2 will generate an aTAM producible DSSF. To this end, we also introduce the Tree Pump Theorem, a result analogous to the important Window Movie Lemma, but with requirements on the set of productions rather than on the self-assembling system itself. 
    more » « less
  4. Abstract Tile drainage is one of the dominant agricultural management practices in the United States and has greatly expanded since the late 1990s. It has proven effects on land surface water balance and quantity and quality of streamflow at the local scale. The effect of tile drainage on crop production, hydrology, and the environment on a regional scale is elusive due to lack of high-resolution, spatially-explicit tile drainage area information for the Contiguous United States (CONUS). We developed a 30-m resolution tile drainage map of the most-likely tile-drained area of the CONUS (AgTile-US) from county-level tile drainage census using a geospatial model that uses soil drainage information and topographic slope as inputs. Validation of AgTile-US with 16000 ground truth points indicated 86.03% accuracy at the CONUS-scale. Over the heavily tile-drained midwestern regions of the U.S., the accuracy ranges from 82.7% to 93.6%. These data can be used to study and model the hydrologic and water quality responses of tile drainage and to enhance streamflow forecasting in tile drainage dominant regions. 
    more » « less
  5. The algorithmic self-assembly of shapes has been considered in several models of self-assembly. For the problem of shape construction, we consider an extended version of the two-handed tile assembly model, which contains positive (attractive) and negative (repulsive) interactions. As a result, portions of an assembly can become unstable and detach. In this model, we utilize fuel-efficient computation to perform Turing machine simulations for the construction of the shape. In this paper, we show how an arbitrary shape can be constructed using an asymptotically optimal number of distinct tile types (based on the shape’s Kolmogorov complexity). We achieve this at O(1) scale factor in this straightforward model, whereas all previous results with sublinear scale factors utilize powerful self-assembly models containing features such as staging, tile deletion, chemical reaction networks, and tile activation/deactivation. Furthermore, the computation and construction in our result only creates constant-size garbage assemblies as a byproduct of assembling the shape. 
    more » « less