skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 10, 2026

Title: Deep Interactions for Multimodal Molecular Property Prediction
Multi-modal learning by means of leveraging both 2D graph and 3D point cloud information has become a prevalent method to improve model performance in molecular property prediction. However, many recent techniques focus on specific pre-training tasks such as contrastive learning, feature blending, and atom/subgraph masking in order to learn multi-modality even though design of model architecture is also impactful for both pre-training and downstream task performance. Relying on pre-training tasks to align 2D and 3D modalities lacks direct interaction which may be more effective in multimodal learning. In this work, we propose MolInteract, which takes a simple yet effective architecture-focused approach to multimodal molecule learning which addresses these challenges. MolInteract leverages an interaction layer for fusing 2D and 3D information and fostering cross-modal alignment, showing strong results using even the simplest pre-training methods such as predicting features of the 3D point cloud and 2D graph. MolInteract exceeds state-of-the-art multimodal pre-training techniques and architectures on various downstream 2D and 3D molecule property prediction benchmark tasks.  more » « less
Award ID(s):
2144209 2223769 2154962 2228534 2411248 2006844
PAR ID:
10657155
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Nature Singapore
Date Published:
Page Range / eLocation ID:
329 to 341
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many applications of machine learning require a model to make accurate predictions on test examples that are distributionally different from training ones, while task-specific labels are scarce during training. An effective approach to this challenge is to pre-train a model on related tasks where data is abundant, and then fine-tune it on a downstream task of interest. While pre-training has been effective in many language and vision domains, it remains an open question how to effectively use pre-training on graph datasets. In this paper, we develop a new strategy and self-supervised methods for pre-training Graph Neural Networks (GNNs). The key to the success of our strategy is to pre-train an expressive GNN at the level of individual nodes as well as entire graphs so that the GNN can learn useful local and global representations simultaneously. We systematically study pre-training on multiple graph classification datasets. We find that naïve strategies, which pre-train GNNs at the level of either entire graphs or individual nodes, give limited improvement and can even lead to negative transfer on many downstream tasks. In contrast, our strategy avoids negative transfer and improves generalization significantly across downstream tasks, leading up to 9.4% absolute improvements in ROC-AUC over non-pre-trained models and achieving state-of-the-art performance for molecular property prediction and protein function prediction. 
    more » « less
  2. Pretraining molecular representations is crucial for drug and material discovery. Recent methods focus on learning representations from geometric structures, effectively capturing 3D position information. Yet, they overlook the rich information in biomedical texts, which detail molecules’ properties and substructures. With this in mind, we set up a data collection effort for 200K pairs of ground-state geometric structures and biomedical texts, resulting in a PubChem3D dataset. Based on this dataset, we propose the GeomCLIP framework to enhance geometric pretraining and understanding by biomedical texts. During pre-training, we design two types of tasks, i.e., multimodal representation alignment and unimodal denoising pretraining, to align the 3D geometric encoder with textual information and, at the same time, preserve its original representation power. Experimental results show the effectiveness of GeomCLIP in various tasks such as molecule property prediction, zero-shot text-molecule retrieval, and 3D molecule captioning. Our code and collected dataset are available at https://github.com/xiaocui3737/GeomCLIP. 
    more » « less
  3. Pre-training powerful Graph Neural Networks (GNNs) with unlabeled graph data in a self-supervised manner has emerged as a prominent technique in recent years. However, inevitable objective gaps often exist between pre-training and downstream tasks. To bridge this gap, graph prompt tuning techniques design and learn graph prompts by manipulating input graphs or reframing downstream tasks as pre-training tasks without fine-tuning the pre-trained GNN models. While recent graph prompt tuning methods have proven effective in adapting pre-trained GNN models for downstream tasks, they overlook the crucial role of edges in graph prompt design, which can significantly affect the quality of graph representations for downstream tasks. In this study, we propose EdgePrompt, a simple yet effective graph prompt tuning method from the perspective of edges. Unlike previous studies that design prompt vectors on node features, EdgePrompt manipulates input graphs by learning additional prompt vectors for edges and incorporates the edge prompts through message passing in the pre-trained GNN models to better embed graph structural information for downstream tasks. Our method is compatible with prevalent GNN architectures pre-trained under various pre-training strategies and is universal for different downstream tasks. We provide comprehensive theoretical analyses of our method regarding its capability of handling node classification and graph classification as downstream tasks. Extensive experiments on ten graph datasets under four pre-training strategies demonstrate the superiority of our proposed method against six baselines. 
    more » « less
  4. This paper studies a category of visual question answering tasks, in which accessing external knowledge is necessary for answering the questions. This category is called outside-knowledge visual question answering (OK-VQA). A major step in developing OKVQA systems is to retrieve relevant documents for the given multimodal query. Current state-of-the-art dense retrieval model for this task uses an asymmetric architecture with a multi-modal query encoder and a uni-modal document encoder. Such an architecture requires a large amount of training data for effective performance. We propose an automatic data generation pipeline for pre-training passage retrieval models for OK-VQA tasks. The proposed approach leads to 26.9% Precision@5 improvements compared to the current state-of-the-art. Additionally, the proposed pre-training approach exhibits a good ability in zero-shot retrieval scenarios. 
    more » « less
  5. Molecular representation learning is vital for various downstream applications, including the analysis and prediction of molecular properties and side effects. While Graph Neural Networks (GNNs) have been a popular framework for modeling molecular data, they often struggle to capture the full complexity of molecular representations. In this paper, we introduce a novel method called Gode, which accounts for the dual-level structure inherent in molecules. Molecules possess an intrinsic graph structure and simultaneously function as nodes within a broader molecular knowledge graph. Gode integrates individual molecular graph representations with multi-domain biochemical data from knowledge graphs. By pre-training two GNNs on different graph structures and employing contrastive learning, Gode effectively fuses molecular structures with their corresponding knowledge graph substructures. This fusion yields a more robust and informative representation, enhancing molecular property predictions by leveraging both chemical and biological information. When fine-tuned across 11 chemical property tasks, our model significantly outperforms existing benchmarks, achieving an average ROC-AUC improvement of 12.7% for classification tasks and an average RMSE/MAE improvement of 34.4% for regression tasks. Notably, Gode surpasses the current leading model in property prediction, with advancements of 2.2% in classification and 7.2% in regression tasks. 
    more » « less