Abstract Two distinct types of rare crystal-rich mafic enclaves have been identified in the rhyolite lava flow from the 2011–12 Cordón Caulle eruption (Southern Andean Volcanic Zone, SVZ). The majority of mafic enclaves are coarsely crystalline with interlocking olivine-clinopyroxene-plagioclase textures and irregular shaped vesicles filling the crystal framework. These enclaves are interpreted as pieces of crystal-rich magma mush underlying a crystal-poor rhyolitic magma body that has fed recent silicic eruptions at Cordón Caulle. A second type of porphyritic enclaves, with restricted mineral chemistry and spherical vesicles, represents small-volume injections into the rhyolite magma. Both types of enclaves are basaltic end-members (up to 9.3 wt% MgO and 50–53 wt% SiO 2 ) in comparison to enclaves erupted globally. The Cordón Caulle enclaves also have one of the largest compositional gaps on record between the basaltic enclaves and the rhyolite host at 17 wt% SiO 2 . Interstitial melt in the coarsely-crystalline enclaves is compositionally identical to their rhyolitic host, suggesting that the crystal-poor rhyolite magma was derived directly from the underlying basaltic magma mush through efficient melt extraction. We suggest the 2011–12 rhyolitic eruption was generated from a primitive basaltic crystal-rich mush that short-circuited the typical full range of magmatic differentiation in a single step.
more »
« less
This content will become publicly available on September 1, 2026
Not so mush: discrete pulses of high-silica rhyolite generation in the Mineral Mountains, Utah
Crystal mush systems, often referenced in the context of large silicic magma bodies, involve the reactivation of a near- solidus crystal mush by heat input from mafic injections. This model suggests that interstitial melt is extracted from the mush, leading to the generation of high-silica rhyolites and granites. Such processes have been well-documented in various tectonic settings and contribute to both large-scale eruptions and the formation of granitic plutons. However, in the Mineral Mountains, Utah, the zircon and whole rock geochemical record indicate a different scenario. The presence of sector-zoned zircons and the absence of highly evolved central domains indicative of extraction from a mush suggest rapid magma generation from partial melting of solid granitoids rather than from a long-lived crystal mush. Fractional crystallization and equilibrium partial melting models support derivation from the granitoid bodies, rather than from a common shared parental rhyolitic magma or from coeval basalts. The proposed model, presented here, for rhyolite formation in the Mineral Mountains involves episodic injections of mafic magma into the crust, leading to localized partial melting of different granitoid lithologies. Partial melting up to 30% can produce isolated, ephemeral pools of high-silica melt, which crystallize zircons rapidly and ascend to form rhyolitic domes. This process is distinct from the long-lived crystal mush model, explains the lack of intermediate compositions, and the confinement of mafic eruptions to lower elevations. By integrating geochemical data, zircon morphology, and fractionation modeling, this study provides a comprehensive framework for understanding the magmatic processes at play in the Mineral Mountains.
more »
« less
- Award ID(s):
- 1940305
- PAR ID:
- 10657319
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Contributions to Mineralogy and Petrology
- Volume:
- 180
- Issue:
- 9
- ISSN:
- 0010-7999
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The origins and evolution of small-volume, high-silica intercontinental rhyolites have been attributed to numerous processes such as derivation from granitic partial melts or small melt fractions remaining from fractional crystallization. Investigations into the thermo-chemical-temporal evolution of these rhyolites has provided insights into the storage and differentiation mechanisms of small volume magmas. In the Mineral Mountains, Utah, high-silica rhyolites erupted through Miocene granitoids between ca. 0.8 and 0.5 Ma, and produced numerous domes, obsidian flows, and pyroclastic deposits. Temporally equivalent basalts erupted in the valleys north and east of the Mineral Mountains, hinting at a potential relationship between mafic and felsic volcanic activity. Here we test competing hypotheses. Are the rhyolites products of extreme fractionation of the coeval basalts? Or do they represent anatectic melts of the granitoids through which they erupted? We address these questions through modeling with new whole rock geochemical data and zircon trace element chemistry, thermometry, and U/Pb LA-ICPMS dates. We couple these data with new 40Ar/39Ar eruption ages to improve upon the volcanic stratigraphy and address the recurrence interval for the most evolved rhyolites. Geochemical data from zircon crystals extracted from six domes suggest increasing differentiation with age and eruptive location, however there is minimal evidence for recycling of earlier crystallized zircon. These data suggest that magma batches were isolated from one another and zircon nucleation and crystallization occurred close to the eruption, thus limiting the residence time of the magmas. These data also perhaps suggest that the magmas were generated in small batches within each of the granitoids rather than from a large crystal mush body underlying the region, as seen at large silicic systems. Our preliminary geochemical models and zircon petrochronology eliminate extreme fractionation and favor local anatectic melting of different granitoids as a mechanism to produce chemical signatures observed in the Quaternary rhyolites in the Mineral Mountains.more » « less
-
Puyehue-Cordon Caulle (PCC) is an active volcanic complex located in the SVZ of the Andes that has had three major historic rhyodacitic eruptions with the most recent event in 2011-12. We provide petrologic and geochemical evidence that PCC is underlain by a crystal mush using recently identified basaltic mafic enclaves that highlights the involvement of distinct mafic magma components during the 2011-12 eruption. We suggest the mafic enclaves represent remnants of the crystal-rich mush that get entrained during eruption of the crystal-poor rhyodacite melt lens cap. This architecture requires the basaltic mush to produce rhyodacite through efficient fractionation. The dominant population of enclaves are equigranular, crystal-rich (45-55%), vesiculated (10-20%), and display interlocking grains between phases. Vesicles have complex shapes filling the irregular interlocking textures, while phenocrysts show stepwise normal zoning (uniform plagioclase cores, ~An90, overgrown with weakly zoned rims, ~An60). A second porphyritic population may represent mafic recharge into the system that bypasses the mush unperturbed. The porphyritic enclaves have spherical vesicles and tightly bound primitive mineral compositions (Fo80-86 vs Fo70-86 in the equigranular enclaves). Published geothermobarometry from the 2011-12 rhyodacite suggests shallow magma storage (5-7 km, 100-140 MPa, 895°C), which we compare against newly determined mineral-mineral trace-element partitioning based thermometry. Our thermometry indicates the equigranular enclaves were stored at ~900-1000°C at the time of eruption suggesting both a compositionally and thermally zoned magma system. We combine this temperature information with trace element data and mass balance calculations from various minerals phases and melt to substantiate our previous hypothesis that the basaltic enclaves can produce rhyodacite given their crystallinity. These estimates may support a spatially connected basaltic crystal-mush underlying a rhyodacite melt lens cap further proving highly efficient rhyolite formation at PCC. PCC’s enclaves present one of the largest compositional gaps on record globally. We compare them to other enclave-bearing systems and how PCC is an important end-member to understand enclaves as well as rhyolite formation.more » « less
-
Active felsic magmatism has been rarely probedin situby drilling but one recent exception is quenched rhyolite sampled during the 2009 Iceland Deep Drilling Project (IDDP). We report finding of rare zircons of up to ∼100 µm in size in rhyolite glasses from the IDDP-1 well products and the host 1724 AD Viti granophyres. The applied SHRIMP U-Th dating for both the IDDP and the Viti granophyre zircons gives zero-age (±2 kyr), and therefore suggests that the IDDP-1 zircons have crystallized from an active magma intrusion rather than due to the 20–80 ka post-caldera magmatic episodes recorded by nearby domes and ridges. Ti-in-zircon geothermometer for Viti granophyre reveals zircon crystallization temperatures ∼800°C–900°C, whereas IDDP-1 rhyolite zircon cores show Ti content higher than 100 ppm, corresponding to temperatures up to ∼1,100°C according to the Ti-in-zircon thermometer. According to our thermochemical model at such elevated temperatures as 1,100°C, rhyolitic magma cannot be saturated with zircon and zircon crystallization is not possible. We explain this controversy by either kinetic effects or non-ideal Ti incorporation into growing zircons at low pressures that start to grow from nucleus at temperatures ∼930°C. High temperatures recorded by IDDP-1 zircon together with an occurrence of baddeleyite require that the rhyolite magma formed by partial melting of the host granophyre due to basaltic magma intrusion. Zr concentration profiles in glass around zircons are flat, suggesting residence in rhyolitic melt for >4 years. In our thermochemical modeling, three scenarios are considered. The host felsite rocks are intruded by: 1) a basaltic sill, 2) rhyolite magma 3) rhyolite sill connected to a deeper magmatic system. Based on the solution of the heat conduction equation accounting for the release of latent heat and effective thermal conductivity, these data confirm that the rhyolite magma could be produced by felsic crust melting as a result of injection of a basaltic or rhyolite sill during the Krafla Fires eruption (1975 AD).more » « less
-
SUMMARY The 2011–2012 eruption at Cordón Caulle in Chile produced crystal-poor rhyolitic magma with crystal-rich mafic enclaves whose interstitial glass is of identical composition to the host rhyolite. Eruptible rhyolites are thought to be genetically associated with crystal-rich magma mushes, and the enclaves within the Cordón Caulle rhyolite support the existence of a magma mush from which the erupted magma was derived. Moreover, towards the end of the 2011–2012 eruption, subsidence gave way to inflation that has on average been continuous through at least 2020. We hypothesize that magma segregation from a crystal mush could be the source of the observed inflation. Conceptually, magma withdrawal from a crystal-poor rhyolite reservoir caused its depressurization, which could have led to upward flow of interstitial melt within an underlying crystal mush, causing a new batch of magma to segregate and partially recharge the crystal-poor rhyolite body. Because the compressibility of the crystalline matrix of the mush is expected to be lower than that of the interstitial melt, which likely contains some fraction of volatile bubbles, this redistribution of melt would result in a net increase in volume of the system and in the observed inflation. We use numerical modelling of subsurface magma flow and storage to show under which conditions such a scenario is supported by geodetic and petrologic observations.more » « less
An official website of the United States government
