Abstract This report provides new stratigraphical and facies data from Devonian and Carboniferous rocks in the Shine Jinst region (Trans Altai Zone, southern Mongolia) with a special focus on the Lower Devonian Chuluun Formation, the Middle Devonian Tsagaankhalga Formation, and the Upper Devonian to Mississippian Heermorit Member of the Indert Formation. Facies development in the Shine Jinst region exhibits a fundamental break in the carbonate platform evolution in the Lower Devonian as reef building organisms were affected by a major regression and deposition of several metres-thick conglomerates at the base of the Tsakhir Formation (Lower Devonian). The overlying Hurenboom Member of the Chuluun Formation is composed of fossiliferous limestones. Reef building organisms, such as colonial corals and stromatoporoids show low diversity and exhibit limited vertical growth and lateral extension of individuals. Thus, they do not represent a real reef as proposed in previous publications but biostromal limestones instead. One reason might be the isolated position of the Shine Jinst region between an unknown continent and a volcanic arc in the early Middle Devonian that hampered the successful colonization in shallow-water areas. Bivalves of the Alatoconchid family were once grouped into reef builders or biostrome builders and they are known only from Permian rocks. The found bivalve biostomes in Mongolia may represent precursors, which would document the oldest record of Alatoconchids found in the world. Remarkable thicknesses of massive crinoidal grainstones (“encrinites”) are documented in many parts of the succession, which suggest rather stable environmental conditions of a carbonate ramp setting at different times. The occurrence of thick-bedded conglomerates in the Shine Jinst section is not restricted to the Lochkovian to Pragian interval (Tsakhir Formation), but also occurs in the Eifelian. A thick-bedded conglomerate, which is interpreted to represent braided fluvial or fan-delta to shallow-marine deposits occurs at the base of the Tsagaankhaalga Formation. A steep relief associated with uplift and volcanism seems to be a realistic scenario for deposition of these sediments. This succession points to a remarkable tectonic uplift or sea-level fall in the Middle Devonian. Conodont findings of the studied section confirm the occurrence of time-equivalent strata of the Choteč Event, the Dasberg Crisis, and the Hangenberg Event found elsewhere in the world, which are described from Mongolia for the first time. Sedimentological descriptions, revised biostratigraphical data, and U-Pb dating by LA ICP-MS of some volcaniclastic rocks from the Chuluun Formation are presented in this report. The studied section records a complex interaction of sedimentation, regional tectonics, sea-level changes and coeval volcanism, which is very similar to other regions in Mongolia. The new data provide the background for further scientific studies in this region. This is a contribution to the Special Series on “The Central Asian Orogenic Belt (CAOB) during Late Devonian: New insights from southern Mongolia”, published in this journal.
more »
« less
This content will become publicly available on September 1, 2026
Depositional history of Devonian and Mississippian rocks from southern Mongolia: Stratigraphic and sedimentologic framework of a volcanic arc system
Abstract This report provides a detailed description of Devonian and Carboniferous formations in the Shinejinst area, southern Mongolia and places them into a regional context. Based on more than 120 thin sections, polished slabs, and field observations a detailed sedimentological/facies study provides information on the depositional development of an island arc system. This study forms a more detailed survey of the same section as our recent overview publication, which contained an updated conodont biostratigraphy of the Shinejinst area. The Shinejinst region is compared with rocks of the coeval Bayankhoshuu Ruins section further in the east. Both sections exhibit differences in the rock record, which can be explained by facies differences due to different settings, but both sections show similarities and interactions, which are mainly driven by regional tectonics and eustatic sea-level changes. Whereas the eastern section (Bayankhoshuu Ruins section) records more deep-water environments, the western section (Shinejinst section) is characterised mainly by shallow-water carbonate ramp successions. In the eastern section subduction started in the Early Devonian and volcanic activity had its most productive phase during the Givetian and lasted in both sections into the Mississippian, when final amalgamation of the arc system with an unknown arc or microcontinent took place. Both sections likely belong to the same island arc terrane, the Mandalovoo Terrane. This area is characterised by very complex geology, and these results will provide a useful framework for any future geologic mapping of the region. This publication is a contribution to the Special Series on “The Central Asian Orogenic Belt (CAOB) during Late Devonian: New insights from southern Mongolia” published in this journal.
more »
« less
- Award ID(s):
- 2044222
- PAR ID:
- 10657407
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Palaeobiodiversity and Palaeoenvironments
- Volume:
- 105
- Issue:
- 3
- ISSN:
- 1867-1594
- Page Range / eLocation ID:
- 635 to 656
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present >90 new igneous and metamorphic zircon and titanite petrochronology ages from the eastern Transverse Ranges of the Southern California Batholith (SCB) to investigate magmatic and tectonic processes in the frontal arc during postulated initiation of Late Cretaceous shallow-slab subduction. Our data cover >4000 km2 in the eastern Transverse Ranges and include data from Mesozoic plutons in the Mt. Pinos, Alamo Mountain, San Gabriel Mountain blocks, and the Eastern Peninsular mylonite zone. Igneous zircon data reveal 4 discrete pulses of magmatism at 258-220 Ma, 160-142 Ma, 120-118 Ma, and 90-66 Ma. The latter pulse involved a widespread magmatic surge in the SCB and coincided with garnet-granulite to upper amphibolite-facies metamorphism and partial melting in the lower crust (Cucamonga terrane, eastern San Gabriel Mountains). In this region, metamorphic zircons in gneisses, migmatites and calc-silicates record high-temperature metamorphism from 91 to 74 Ma at 9–7 kbars and 800–730°C. The Late Cretaceous arc flare-up was temporally and spatially associated with the development of a regionally extensive oblique sinistral-reverse shear system that includes from north to south (present-day) the Tumamait shear zone (Mt. Pinos), the Alamo Mountain-Piru Creek shear zone, the Black Belt shear zone (Cucamonga terrane), and the Eastern Peninsular Ranges shear zone. Syn-kinematic, metamorphic titanite ages in the Tumamait shear zone range from 77–74 Ma at 720–700°C, titanites in the Black Belt mylonite zone give an age of 83 Ma, and those in the eastern Peninsular Ranges mylonite zone give ages of 89–86 Ma at 680–670°C. These data suggest a progressive northward younging of ductile shearing at amphibolite- to upper-amphibolite-facies conditions from 88 to 74 Ma, which overlaps with the timing of the Late Cretaceous arc flare-up event. Collectively, these data indicate that arc magmatism, high-temperature metamorphism, and intra-arc contraction were active in the SCB throughout the Late Cretaceous. These observations appear to contradict existing models for the termination of magmatism and refrigeration of the arc due to underthrusting of the conjugate Shatsky rise starting at ca. 88 Ma. We suggest that shallow-slab subduction likely postdates ca. 74 Ma when high-temperature metamorphism ceased in the SCB.more » « less
-
null (Ed.)Abstract This study investigates the provenance of sedimentary rocks in Bogda Mountains, NW China, and reconstructs the lithology and unroofing history of the Eastern North Tianshan Suture. Petrographic point counting data of sandstones and compositions of conglomerates of upper Permian-lowermost Triassic Wutonggou low-order cycle from Zhaobishan, North Tarlong, Taodonggou, and Dalongkou sections in the southern and northern foothills of Bogda Mountains were used to interpret the temporal and spatial variations of lithology of the Eastern North Tianshan Suture, which is the sediment source area. Three compositional trends were identified. A trend of upward-increasing quartz content and granitic pebbles in Zhaobishan section suggests a change from the undissected volcanic arc, accretionary wedge and trench setting to predominantly transitional volcanic arc and subordinate accretionary wedge and trench, in the eastern part of the Eastern North Tianshan Suture. In North Tarlong and Taodonggou sections, however, the lithic content decreases and the contents of quartz and granitic pebbles increase up sections. These trends indicate that the western part of the Eastern North Tianshan Suture changed from an undissected volcanic arc to the transitional volcanic arc, accretionary wedge and trench. No clear trend in the lithic-rich sandstones of the Dalongkou section indicates that sediments were derived from the undissected volcanic arc in the Eastern North Tianshan Suture and local rift shoulders. Compositional variations of studied rocks suggest that the Eastern North Tianshan Suture was an amalgamated complex with great spatial and temporal heterogeneities in lithology and experienced persistent unroofing during late Permian-earliest Triassic. This study reconstructs a key element of the Chinese Tianshan Suture and serves as an example to understand the unroofing processes of ancient sutures.more » « less
-
Abstract We explore the growth of lower-continental crust by examining the root of the Southern California Batholith, an ~500-km-long, paleo-arc segment of the Mesozoic California arc that lies between the southern Sierra Nevada Batholith and northern Peninsular Ranges Batholith. We focus on the Cucamonga and San Antonio terranes located in the eastern San Gabriel Mountains where the deep root of the Mesozoic arc is exhumed by the Quaternary Cucamonga thrust fault. This lower- to mid-crustal cross section of the arc allows us to investigate (1) the timing and rates of Mesozoic arc construction, (2) mechanisms of sediment incorporation into the lower crust, and (3) the interplay between mantle input and crustal recycling during arc magmatic surges. We use U-Pb detrital zircon geochronology of four quartzites and one metatexite migmatite to investigate the origin of the lower-crustal Cucamonga metasedimentary sequence, and U-Pb zircon petrochronology of 26 orthogneisses to establish the timing of arc magmatism and granulite-facies metamorphism. We find that the Cucamonga metasedimentary sequence shares broad similarities to Sur Series metasedimentary rocks in the Salinia terrane, suggesting that both were deposited in a late Paleozoic to early Mesozoic forearc or intra-arc basin marginal to the Southern California Batholith. This basin was progressively underthrust beneath the arc during the Middle Jurassic to Late Cretaceous and was metamorphosed during two high-grade (>750 °C), metamorphic events at ca. 124 Ma and 89–75 Ma. These metamorphic events were associated with 100 m.y. of arc magmatism that lasted from 175 Ma to 75 Ma and culminated in a magmatic surge from ca. 90 Ma to 75 Ma. Field observations and petrochronology analyses indicate that partial melting of the underthrust Cucamonga metasedimentary rocks was triggered by the emplacement of voluminous, mid-crustal tonalites and granodiorites. Partial melting of the metasedimentary rocks played a subsidiary role relative to mantle input in driving the Late Cretaceous magmatic flare-up event.more » « less
-
A Middle Devonian ostracod fauna is described from dark-grey limestones and grey shales of the Tsagaankhaalga Formation in southern Mongolia. Conodonts from these deposits range from the Polygnathus partitus to costatus zones, representing the Eifelian Choteč Event levels. The fauna is characterised by low diversity and high quantity of specimens. Eleven genera and fourteen ostracod species have been recognised belonging to the orders Palaeocopida, Platycopida and Podocopida. The palaecopin, platycopin and podocopin ostracod assemblage can be characterised as an Eifelian Mega-Assemblage (II-III), which lived in open shallow-marine environment. The Mongolian Eifelian ostracod fauna includes endemic and cosmopolitan species. The studied fauna is most closely related to coeval faunas of Laurussia and Siberia.more » « less
An official website of the United States government
