Semiactive model predictive control (sMPC) can be very effective, but its computational cost due to the inherent mixed-integer quadratic programming (MIQP) optimization precludes its use in real-time vibration control. This study proposes training neural networks (NNs) to predict in real-time only the MIQP's integer variables' values, called a strategy, for a given structure state. Because the number of strategies is exponential in the number of sMPC horizon steps, the resulting NN can be massive. This study proposes to reduce the NN dimension by exploiting the homogeneity-of-order-one nature of this control problem and, using state vector statistics, to efficiently choose training samples. The single large NN is proposed to be split into several much smaller NNs, each predicting a strategy grouping, that together uniquely and efficiently predict the strategy. Given the strategy's integer values, the MIQP optimization reduces to a quadratic programming (QP) problem, solved using a fast QP solver with proposed adaptations: exploiting optimization efficiencies and bounding sub-optimality; using several NN predictions; and reverting to a simpler (suboptimal) semiactive control algorithm upon occasional incorrect NN predictions or QP solver nonconvergence. Shear building examples demonstrate significant online computational cost reductions with control performance comparable to the conventional MIQP-based control.
more »
« less
Global Optimization of Gaussian Process Acquisition Functions Using a Piecewise-Linear Kernel Approximation
Bayesian optimization relies on iteratively constructing and optimizing an acquisition function. The latter turns out to be a challenging, non-convex optimization problem itself. Despite the relative importance of this step, most algorithms employ sampling- or gradient-based methods, which do not provably converge to global optima. This work investigates mixed-integer programming (MIP) as a paradigm for global acquisition function optimization. Specifically, our Piecewise-linear Kernel Mixed Integer Quadratic Programming (PK-MIQP) formulation introduces a piecewise-linear approximation for Gaussian process kernels and admits a corresponding MIQP representation for acquisition functions. The proposed method is applicable to uncertainty-based acquisition functions for any stationary or dot-product kernel. We analyze the theoretical regret bounds of the proposed approximation, and empirically demonstrate the framework on synthetic functions, constrained benchmarks, and a hyperparameter tuning task.
more »
« less
- Award ID(s):
- 2237616
- PAR ID:
- 10657423
- Publisher / Repository:
- PMLR
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Space mission planning and spacecraft design are tightly coupled and need to be considered together for optimal performance; however, this integrated optimization problem results in a large-scale Mixed-Integer Nonlinear Programming (MINLP) problem, which is challenging to solve. In response to this challenge, this paper proposes a new solution approach to this MINLP problem by iterative solving a set of coupled subproblems via the augmented Lagrangian coordination approach following the philosophy of Multi-disciplinary Design Optimization (MDO). The proposed approach leverages the unique structure of the problem that enables its decomposition into a set of coupled subproblems of different types: a Mixed-Integer Quadratic Programming (MIQP) subproblem for mission planning and one or more Nonlinear Programming (NLP) subproblem(s) for spacecraft design. Since specialized MIQP or NLP solvers can be applied to each subproblem, the proposed approach can efficiently solve the otherwise intractable integrated MINLP problem. An automatic and effective method to find an initial solution for this iterative approach is also proposed so that the optimization can be performed without the need for a user-defined initial guess. In the demonstration case study, a human lunar exploration mission sequence is optimized with a subsystem-level parametric spacecraft design model. Compared to the state-of-the-art method, the proposed formulation can obtain a better solution with a shorter computational time even without parallelization. For larger problems, the proposed solution approach can also be easily parallelizable and thus is expected to be further advantageous and scalable.more » « less
-
The inherent nonlinearity of the power flow equations poses significant challenges in accurately modeling power systems, particularly when employing linearized approximations. Although power flow linearizations provide computational efficiency, they can fail to fully capture nonlinear behavior across diverse operating conditions. To improve approximation accuracy, we propose conservative piecewise linear approximations (CPLA) of the power flow equations, which are designed to consistently over- or under-estimate the quantity of interest, ensuring conservative behavior in optimization. The flexibility provided by piecewise linear functions can yield improved accuracy relative to standard linear approximations. However, applying CPLA across all dimensions of the power flow equations could introduce significant computational complexity, especially for large-scale optimization problems. In this paper, we propose a strategy that selectively targets dimensions exhibiting significant nonlinearities. Using a second-order sensitivity analysis, we identify the directions where the power flow equations exhibit the most significant curvature and tailor the CPLAs to improve accuracy in these specific directions. This approach reduces the computational burden while maintaining high accuracy, making it particularly well-suited for mixed-integer programming problems involving the power flow equations.more » « less
-
Adjustable robust optimization (ARO) involves recourse decisions (i.e. reactive actions after the realization of the uncertainty, ‘wait-and-see’) as functions of the uncertainty, typically posed in a two-stage stochastic setting. Solving the general ARO problems is challenging, therefore ways to reduce the computational effort have been proposed, with the most popular being the affine decision rules, where ‘wait-and-see’ decisions are approximated as affine adjustments of the uncertainty. In this work we propose a novel method for the derivation of generalized affine decision rules for linear mixed-integer ARO problems through multi-parametric programming, that lead to the exact and global solution of the ARO problem. The problem is treated as a multi-level programming problem and it is then solved using a novel algorithm for the exact and global solution of multi-level mixed-integer linear programming problems. The main idea behind the proposed approach is to solve the lower optimization level of the ARO problem parametrically, by considering ‘here-and-now’ variables and uncertainties as parameters. This will result in a set of affine decision rules for the ‘wait-and-see’ variables as a function of ‘here-and-now’ variables and uncertainties for their entire feasible space. A set of illustrative numerical examples are provided to demonstrate the potential of the proposed novel approach.more » « less
-
Given a neural network (NN) and a set of possible inputs to the network described by polyhedral constraints, we aim to compute a safe over-approximation of the set of possible output values. This operation is a fundamental primitive enabling the formal analysis of neural networks that are extensively used in a variety of machine learning tasks such as perception and control of autonomous systems. Increasingly, they are deployed in high-assurance applications, leading to a compelling use case for formal verification approaches. In this paper, we present an efficient range estimation algorithm that iterates between an expensive global combinatorial search using mixed-integer linear programming problems, and a relatively inexpensive local optimization that repeatedly seeks a local optimum of the function represented by the NN. We implement our approach and compare it with Reluplex, a recently proposed solver for deep neural networks. We demonstrate applications of our approach to computing flowpipes for neural network-based feedback controllers. We show that the use of local search in conjunction with mixed-integer linear programming solvers effectively reduces the combinatorial search over possible combinations of active neurons in the network by pruning away suboptimal nodes.more » « less
An official website of the United States government

