skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 19, 2026

Title: Integrating theory and empirical patterns: Fish body size distributions, life history traits, and environmental flows in streams
Individual size distributions (ISDs) are prominent in ecological research and may support resource managers with ecosystem-scale objectives. We use a database of individual size measurements for US stream fishes to test for direct and indirect effects of traits, flow regimes, and land use on the interspecific ISD exponent. Path analysis indicates that traits have strong, direct effects on ISD. Flow and land use effects on the exponent are largely indirectly mediated by their influences on species traits. ISD exponents increase (abundances of larger-bodied individuals increase, relative to smaller-bodied) when environments favor higher trophic levels, warmer thermal tolerances, and periodic life histories. Alternatively, ISD exponents decrease in systems that favor opportunistic life histories. Our flexible modeling framework that includes direct and indirect effects of traits, flow regimes, and land use on ISD could be expanded to incorporate additional variables that interact with flow (e.g., temperature and physical habitat) to assess of effects of multiple stressors on aquatic ecosystem functioning.  more » « less
Award ID(s):
1553111
PAR ID:
10657572
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
American Association for the Advancement of Science
Date Published:
Journal Name:
Science Advances
Volume:
11
Issue:
51
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Jones (Ed.)
    The addition of terrestrial inputs to the ocean can have cascading impacts on coastal biogeochemistry by directly altering the water chemistry and indirectly changing ecosystem metabolism, which also influences water chemistry. Here, we use submarine groundwater discharge (SGD) as a model system to examine the direct geochemical and indirect biologically mediated effects of terrestrial nutrient subsidies on a fringing coral reef. We hypothesize that the addition of new solutes from SGD alters ecosystem metabolic processes including net ecosystem production and calcification, thereby changing the patterns of uptake and release of carbon by benthic organisms. SGD is a common land–sea connection that delivers terrestrially sourced nutrients, carbon dioxide, and organic matter to coastal ecosystems. Our research was conducted at two distinct coral reefs in Moʻorea, French Polynesia, characterized by contrasting flow regimes and SGD biogeochemistry. Using a Bayesian structural equation model, our research elucidates the direct geochemical and indirect biologically mediated effects of SGD on both dissolved organic and inorganic carbon pools. We reveal that SGD‐derived nutrients enhance both net ecosystem production and respiration. Furthermore, the study demonstrates that SGD‐induced alterations in net ecosystem production significantly influence pH dynamics, ultimately impacting net ecosystem calcification. Notably, the study underscores the context‐dependent nature of these cascading direct and indirect effects resulting from SGD, with flow conditions and the composition of the terrestrial inputs playing pivotal roles. Our research provides valuable insights into the interplay between terrestrial inputs and coral reef ecosystems, advancing our understanding of coastal carbon cycling and the broader implications of allochthonous inputs on ecosystem functioning. 
    more » « less
  2. Abstract AimThe frequency of different body sizes in an ecological community (the individual size distribution, or ISD) is a key link between the number of individual organisms present in a community and community function—total biomass or total energy use. If the ISD changes over time, the dynamics of community function may become decoupled from trends in abundance. Understanding how, and how often, the ISD modulates the relationship between abundance, biomass and energy use is of critical importance to understand biodiversity trends in the Anthropocene. Here, we conduct the first macroecological‐scale analysis of this type for avian communities. LocationNorth America, north of Mexico. Time Period1989–2018. Major Taxa StudiedBreeding birds. MethodsWe used species' traits to generate annual ISDs for bird communities in the North American Breeding Bird Survey. We compared the long‐term trends in total biomass and energy use to the trends generated from a null model of an unchanging ISD. ResultsTrends in biomass have been evenly split between increases and decreases, but the trends predicted by the null model were dominated by decreases. A substantial number of communities have undergone a shift in the ISD favouring larger bodied species, resulting in a less negative trend in biomass than would be expected had the ISD remained static. Trends in energy use more closely paralleled the null model. Main ConclusionsTaking changes in the ISD into account qualitatively changes the continental‐scale picture of how biomass and energy use have changed over the past 30 years. For North American breeding birds, shifts in species composition favouring larger bodied species may have partially offset declines in standing biomass driven by losses of individuals over the past 30 years. 
    more » « less
  3. Abstract A fundamental pattern in ecology is that smaller organisms are more abundant than larger organisms. This pattern is known as the individual size distribution (ISD), which is the frequency distribution of all individual body sizes in an ecosystem.The ISD is described by a power law and a major goal of size spectra analyses is to estimate the exponent of the power law,λ. However, while numerous methods have been developed to do this, they have focused almost exclusively on estimatingλfrom single samples.Here, we develop an extension of the truncated Pareto distribution within the probabilistic modelling language Stan. We use it to estimate multipleλs simultaneously in a hierarchical modelling approach.The most important result is the ability to examine hypotheses related to size spectra, including the assessment of fixed and random effects, within a single Bayesian generalized mixed model. While the example here uses size spectra, the technique can also be generalized to any data that follow a power law distribution. 
    more » « less
  4. Abstract A warmer ocean will change plankton physiological rates, alter plankton community composition, and in turn affect ecosystem functions, such as primary production, recycling, and carbon export. To predict how temperature changes affect plankton community dynamics and function, we developed a mechanistic trait‐based model of unicellular plankton (auto‐hetero‐mixotrophic protists and bacteria). Temperature dependencies are specifically implemented on cellular process rather than at the species level. As the uptake of resources and metabolic processes have different temperature dependencies, changes in the thermal environment will favor organisms with different investments in processes such as photosynthesis and biosynthesis. The precise level of investments, however, is conditional on the limiting process and is ultimately determined dynamically by competition and predation within the emergent community of the water column. We show how an increase in temperature can intensify nutrient limitation by altering organisms' interactions, and reduce relative cell‐size in the community. Further, we anticipate that a combination of temperature and resource limitation reduces ecosystem efficiency at capturing carbon due to strengthening of the microbial loop. By explicitly representing the effects of temperature on traits responsible for growth, we demonstrate how changes on the individual level can be scaled up to trends at the ecosystem level, helping to discern direct from indirect effects of temperature on natural plankton communities. 
    more » « less
  5. Abstract Large mammalian herbivores exert strong top‐down control on plants, which in turn influence most ecological processes. Accordingly, the decline, displacement, or extinction of wild large herbivores in African savannas is expected to alter the physical structure of vegetation, the diversity of plant communities, and downstream ecosystem functions. However, herbivore impacts on vegetation comprise both direct and indirect effects and often depend on herbivore body size and plant type. Understanding how herbivores affect savanna vegetation requires disaggregating the effects of different herbivores and the responses of different plants, as well as accounting for both the structural complexity and composition of plant assemblages. We combined high‐resolution Light Detection and Ranging (LiDAR) with field measurements from size‐selective herbivore exclosures in Kenya to determine how herbivores affect the diversity and physical structure of vegetation, how these impacts vary with body size and plant type, and whether there are predictable associations between plant diversity and structural complexity. Herbivores generally reduced the diversity and abundance of both overstory and understory plants, though the magnitude of these impacts varied substantially as a function of body size and plant type: only megaherbivores (elephants and giraffes) affected tree cover, whereas medium‐ and small‐bodied herbivores had stronger effects on herbaceous diversity and abundance. We also found evidence that herbivores altered the strength and direction of interactions between trees and herbaceous plants, with signatures of facilitation in the presence of herbivores and of competition in their absence. While megaherbivores uniquely affected tree structure, medium‐ and small‐bodied species had stronger (and complementary) effects on metrics of herbaceous vegetation structure. Plant structural responses to herbivore exclusion were species‐specific: of five dominant tree species, just three exhibited significant individual morphological variation across exclosure treatments, and the size class of herbivores responsible for these effects varied across species. Irrespective of exclosure treatment, more species‐rich plant communities were more structurally complex. We conclude that the diversity and architecture of savanna vegetation depend on consumptive and nonconsumptive plant–herbivore interactions; the roles of herbivore diversity, body size, and plant traits in mediating those interactions; and a positive feedback between plant diversity and structural complexity. 
    more » « less