Electronic system layouts have increasingly become smaller and more compact. To address the growing demand for performance, dynamic thermal management with thermal energy storage has emerged as an attractive solution. Phase change materials (PCM) can store and release large amounts of heat through melting or solidification. However, they are limited by their thermal conductivity, which is several orders of magnitude lower than traditional heat sinks. To address this design weakness, we have developed a novel composite consisting of vertically aligned carbon nanotube arrays infiltrated with PCM to deliver a high thermal conductivity storage medium that also maintains the high latent heat capacity of the native PCM. This study numerically and experimentally investigates the design of an encapsulated CNT-PCM composite and its impact on the temperature rise and peak temperature of an electronic device. Different form factors have been experimentally tested. The composite's impact on a heating element is measured experimentally, and a numerical model is developed and verified using the experimental results. Additional models are designed to evaluate the effect of composite thickness on thermal response.
more »
« less
Thermal impedance in pulsed energy storage systems with phase change materials
Phase change materials (PCMs) have tremendous capacity as passive components to recover and repurpose thermal energy from transient power systems. However, PCMs are only effective if the time scale of the thermal energy storage and retrieval rates match those required for a particular system. We develop a framework to assess the efficiency of pulsed thermal energy storage based on the concept of “thermal impedance,” drawing upon an analogous approach from electrical energy storage. We experimentally characterize a 1 cm thick paraffin-infiltrated copper foam composite PCM subject to pulsed heat boundary conditions up to 1 W cm−2 and demonstrate a decrease in thermal impedance by up to a factor of 2.5× in the regime in which melting occurs (τon = 10−1 to >102 s) relative to a reference case in which melting does not occur. This represents both a signature of the ability to extract or retrieve thermal energy via latent heat, as well as an experimentally accessible measure that provides insight into the internal dynamics of a composite PCM volume. These principles can serve to design the internal structure of composite PCM elements for pulsed thermal systems.
more »
« less
- Award ID(s):
- 1847956
- PAR ID:
- 10657654
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Journal of Applied Physics
- Volume:
- 139
- Issue:
- 1
- ISSN:
- 0021-8979
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper presents a study on the characterization of density as a function of temperature for phase change materials (PCMs). More specifically, in this study we analyze organic alkane PCMs, often called paraffins. PCMs are materials that have the ability to absorb a substantial amount of heat during phase transition from solid to liquid, and therefore prove to be useful in thermal energy storage. The density of paraffin wax PCMs is largely dependent on temperature, and during the phase change process, the density decreases dramatically as the PCM transitions from solid to liquid. Consequently, the PCM experiences dramatic volumetric expansion during this transition. Besides the thermal energy storage uses of PCMs, this volumetric expansion that they exhibit is also used in thermal actuator applications, often referred to as wax motors. While density of PCMs does affect their thermal and mechanical performance, the property is not well-characterized within the literature. In this paper, we examine ten paraffin wax PCMs with varying meltingtemperatures and characterize their densities as a function of temperature. This characterization was done usinga piston and cylinder dilatometer test setup within a temperature-controlled thermal chamber that we designedand validated to the well-characterized density properties of water. The density and temperature relationships werefurther analyzed using piecewise linear regression analysis to develop mathematical models of density as it relates totemperature, which will be useful to those wishing to analyze designs in which PCMs are used, such as in PCM-filled heat sinks.more » « less
-
This study explores the latent thermal energy storage potential of an organic phase change material with porous copper foam and its applicability in electronic cooling under varying heat load conditions. The organic phase change material, n-eicosane, is known for its inherently low thermal conductivity of 0.15 W/mK, rendering it vulnerable during power spikes despite its abundant latent heat energy for phase transition from solid to liquid. Porous copper foams are often integrated into n-eicosane to enhance the composite’s thermal conductivity. However, the volume fraction of the phase change material in the porous foam that optimally improves the thermal performance can be dependent on the boundary condition, the cut-off temperature, and the thickness. A finite difference numerical model was developed and utilized to ascertain the energy consumption for the composite of n-eicosane with two kinds of porous copper foam with varying porosity under different heat rates, cut-off temperatures, and thickness. In addition, the results are compared with a metallic phase change material (gallium), a material chosen with a similar melting point but significantly high thermal conductivity and volumetric latent heat. For validation of the numerical model and to experimentally verify the effect of boundary condition (heat rate), experimental investigation was performed for n-eicosane and high porosity copper foam composite at varying heat rates to observe its melting and solidification behaviors during continuous operation until a cut-off temperature of 70 ◦C is reached. Experiments reveal that heat rate influences the amount of latent energy storage capability until a cutoff temperature is reached. For broad comparison, the numerical model was used to obtain the accessed energy and power density and generate thermal Ragone plots to compare and characterize pure gallium and n-eicosane - porous foam composite with varying volume fractions, cutoff temperature, and thickness under volumetric and gravimetric constraints. Overall, the proposed framework in the form of thermal Ragone plots effectively delineates the optimal points for various combinations of heat rate, cutoff point, and aspect ratio, affirming its utility for comprehensive design guidelines for PCM-based composites for electronic cooling applicationsmore » « less
-
Reconfigurable or programmable photonic devices are rapidly growing and have become an integral part of many optical systems. The ability to selectively modulate electromagnetic waves through electrical stimuli is crucial in the advancement of a variety of applications from data communication and computing devices to environmental science and space explorations. Chalcogenide‐based phase‐change materials (PCMs) are one of the most promising material candidates for reconfigurable photonics due to their large optical contrast between their different solid‐state structural phases. Although significant efforts have been devoted to accurate simulation of PCM‐based devices, in this paper, three important aspects which have often evaded prior models yet having significant impacts on the thermal and phase transition behavior of these devices are highlighted: the enthalpy of fusion, the heat capacity change upon glass transition, as well as the thermal conductivity of liquid‐phase PCMs. The important topic of switching energy scaling in PCM devices, which also helps explain why the three above‐mentioned effects have long been overlooked in electronic PCM memories but only become important in photonics, is further investigated. These findings offer insight to facilitate accurate modeling of PCM‐based photonic devices and can inform the development of more efficient reconfigurable optics.more » « less
-
Inorganic salt hydrates are promising phase-change materials (PCMs) for thermal energy storage due to their high latent heat of fusion. However, their practical application is often limited by their unstable form, dehydration, large supercooling, and low thermal conductivity. Porous melamine foam and its carbonized derivatives are potential supporting porous materials to encapsulate inorganic salt hydrate PCMs to address these problems. This work investigates the effect of pyrolysis temperature on the morphology and structure of the carbonized foams and their thermal energy storage performance. Pyrolysis of melamine foam at 700−900 °C leads to the formation of crystalline sodium cyanate and sodium carbonate particles on the foam skeleton surface, which allows the spontaneous impregnation of the carbon foam with molten CaCl2·6H2O.The form-stable foam-CaCl2·6H2O composite effectively suppresses supercooling and dehydration, demonstrating the efficacy of carbon foam as a promising supporting material for inorganic salt hydrate PCMs.more » « less
An official website of the United States government
