skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Field Observations of Surface Rupture and Fault Displacement in the 2023 Mw 7.8 Pazarcık, Türkiye Earthquake
Field observations of surface rupture extent and fault displacement are critical to improving our understanding of rupture processes in the 6 February 2023 earthquakes in the Kahramanmaraş region of Türkiye. This data release includes two primary datasets depicting the 2023 moment magnitude (Mw) 7.8 Pazarcık, Türkiye earthquake rupture: 1) surface rupture mapping (lines) and 2) measurements of left-lateral and vertical fault displacement (points). These observations were made in the field, northwest of Pazarcık, Türkiye along the East Anatolian (EAF) and Narlı faults between 2 and 11 June 2023. Surface-rupture mapping consists of field observations along a 28-km-long reach of the central EAF and northern 5 km of the Narlı fault that lacked previous remote observations. An additional dataset includes observations of no surface rupture. Displacement data include 68 field observations of left-laterally and vertically displaced natural or cultural features, with 62 measurements along the central EAF and 6 measurements on the Narlı fault. Collectively, these data support scientific and humanitarian response efforts, provide field observations for comparison to remote data, and help improve our understanding of the geologic context of the 2023 Kahramanmaraş region earthquakes.   This database, identified as Field Observations of Surface Rupture and Fault Displacement in the 2023 Mw 7.8 Pazarcık, Türkiye Earthquake, has been approved for release by the U.S. Geological Survey (USGS). Although this database has been subjected to rigorous review and is substantially complete, the USGS reserves the right to revise the data pursuant to further analysis and review. Furthermore, the database is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.   Explanation of Data   Surface Rupture Mapping Surface-rupture mapping consists of 18 km of on-the-ground field observations along a 28 km reach of the EAF and the northern 5 km of the Narlı fault recorded using handheld global navigation satellite system (GNSS) devices and tablets. Rupture traces were mapped at a spatial accuracy of ≤10 m and compiled in the office at a scale of 1:1500. Although these data accurately represent the rupture at this scale, additional distributed, cryptic, or small (<0.1 m) displacements not recognized in the field may be present but not depicted in the linework. Linework are available as shapefile, keyhole markup language, and geojson.   Fields: Fault: Fault along which rupture observation was made. EAF – East Anatolian fault.   Date: Calendar date of rupture mapping in format day–month-year.   Notes: Notes on geomorphic expression of rupture. “Null” indicates no additional information reported for rupture trace.   No Surface Rupture This dataset includes line observations of no surface rupture. These data represent areas that we walked during our field campaign, but made no observations of rupture, including distributed zones of cracking or displacement. Although we are confident that no surface rupture with measurable lateral or vertical displacement (exceeding a few centimeters) is present in this area, cryptic or subtle (<0.01 m) displacements not recognized in the field may be present but not depicted in the linework. Linework based on walk tracks mapped at a spatial accuracy of ≤10 m and simplified and compiled in the office at a consistent scale of 1:1500. Linework are available as shapefile, keyhole markup language, and geojson.   Fields: Date: Calendar date of no rupture observation in format day–month-year.   Notes: Notes on whether minor cracking, without measurable lateral or vertical displacement, was observed.   Displacement data Fault displacement data include 68 field observations of left-laterally and vertically displaced natural (e.g., gully thalweg) or cultural (e.g., road edge) features along the EAF and Narlı fault. Left-lateral displacements were measured by projecting sub-linear features into the fault rupture using chaining pins and tape measures. Data were recorded using field notebooks, cameras, tablets, and handheld GNSS devices (≤10 m accuracy) and compiled in the office. Time-averaged GNSS points from tablets and high-precision GNSS (Trimble Geo7x; <1 m accuracy) measured along the features were recorded in the field and used in the office to measure displacement. Descriptions of measurement methods, features evaluated, and displacement values and uncertainties are included in tabular format as comma-separated values (CSV), shapefile, keyhole markup language, and geojson.   Fields: ID: Unique numerical identifier for point observation.   Latitude: Decimal degrees north of the equator; WGS 84, EPSG 4326.   Longitude: Decimal degrees east of the prime meridian; WGS 84, EPSG 4326.   Date. Calendar date of point measurement in format day–month-year.   Fault: Fault along which displacement observation was made. EAF – East Anatolian fault.   H_pref_m: Field-based preferred left-lateral displacement in meters of a natural (e.g., stream channel) or cultural (e.g., concrete wall) feature crossing the fault.   Pref_type: Methods used to determine H_pref_m. Measured – value measured in the field. Sum – value is the sum of separate displacement measurements for subparallel strands (refer to Notes field for description and component displacement values). Midpoint – value is the midpoint between the H_min_m and H_max_m displacement values. Spatial – value measured in the office using spatial data (points) recorded in the field.    H_min_m: Field-based minimum left-lateral displacement in meters of a natural or cultural feature crossing the fault. Approximates lower 95% confidence bound unless otherwise noted.   H_max_m: Field-based maximum left-lateral displacement in meters of a natural (e.g., stream channel) or cultural (e.g., concrete wall) feature crossing the fault.  Approximates upper 95% confidence bound unless otherwise noted.   Aperture_m: Total distance over which features offset by fault rupture are projected to determine displacement across the site. The aperture includes the fault zone and any distributed deformation of the feature.   FaultStrike: Local (m-scale) strike of fault in degrees at displacement measurement site using a 6-degree declination. Measurements without a corresponding dip entry (NaN entry in FaultDip field) reflect the general azimuth of the surface rupture with an estimated uncertainty of ±5 degrees.    FaultDip: Local (m-scale) dip of fault in degrees at displacement measurement site. Dip direction is based on right-hand rule, combined with the corresponding FaultStrike entry for the measurement site.   FeatAzim_N: Azimuth of the faulted cultural or natural feature in degrees (6-degree declination) on the north side of the surface rupture.   FeatAzim_S: Azimuth of the faulted cultural or natural feature in degrees (6-degree declination) on the south side of the surface rupture.   V_pref_m: Field-based preferred scarp height in meters of a natural or cultural feature or surface crossing the fault.    V_min_m: Field-based minimum scarp height in meters of a natural or cultural crossing the fault.  V_min_m approximates lower 95% confidence bound unless otherwise noted.   V_max_m: Field-based maximum scarp height in meters of a natural or cultural feature or surface crossing the fault.  Approximates upper 95% confidence bound unless otherwise noted.   ScarpFaceDir: Facing direction of vertical scarp produced in surface rupture. Variable – variable scarp facing directions are present. None – rupture does not have a vertical expression.   MsmtType: Whether left-lateral or vertical displacements capture slip in all known rupture traces. Complete – measurement captures all recognized and mapped slip at the site; however, the measurement may still lack minor displacement from distributed, far-field, and/or cryptic slip. Incomplete – Some recognized and mapped rupture traces are not accounted for in the displacement measurement (e.g., the feature evaluated only crosses one of two subparallel rupture strands) and is considered a minimum value. Likely complete – the measurement is more likely to be a complete measurement than an incomplete (minimum) estimate. Likely incomplete – the measurement is more likely to be an incomplete (minimum) estimate than a complete measurement.   Setting: General setting of the displacement measurement. Cultural includes built (e.g., rock wall), planted (e.g., orchard rows), or modified (e.g., irrigation ditch) features. Natural indicates erosional or depositional features such as a gully or gravel bar.     Feature: Natural or cultural feature crossing the fault, displaced by the surface rupture, and used to estimate left-lateral and/or vertical displacement.   MsmtMethod: Methods used to measure horizontal displacement. Projection – natural or cultural feature projected into the fault zone using chaining pins and/or tape measures with uncertainty defined by multiple projections. Quick tape – displacement estimated by measuring the distance between piercing points (where linear features crossing the fault intersect the rupture) subparallel to the fault rupture with a tape measure (no projections). Uncertainties measured or estimated. Spatial – points along feature measured using time-averaged Trimble Geo7x or Avenza; displacement measured in office with uncertainties based on multiple projections.   Notes: Description of the feature used to measure displacement, the expression of the rupture (e.g., multiple strands), measurement confidence, and/or information on repeated measurements. Abbreviations: EQ – earthquake; msmt – measurement; N – north; S – south; E – east; W – west; NE – northeast; NW – northwest; SE – southeast; SW – southwest; Geo7x – Trimble Geo7x GNSS device; GEER team – previous measurements made by a Geotechnical Extreme Events Reconnaissance (GEER) team in March 2023.    more » « less
Award ID(s):
2330152
PAR ID:
10657929
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
U.S. Geological Survey
Date Published:
Subject(s) / Keyword(s):
seismology geomorphology structural geology
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We investigate the influence of earthquake source characteristics and geological site parameters on fault scarp morphologies for thrust and reverse fault earthquakes using geomechanical models. A total of 3434 distinct element method (DEM) model experiments were performed to evaluate the impact of the sediment depth, density, homogeneous and heterogeneous sediment strengths, fault dip, and the thickness of unruptured sediment above the fault tip on the resultant coseismic ground surface deformation for a thrust or reverse fault earthquake. A machine learning model based on computer vision (CV) was applied to obtain measurements of ground surface deformation characteristics (scarp height, uplift, deformation zone width, and scarp dip) from a total of 346,834 DEM model stages taken every 0.05 m of slip. The DEM dataset exhibits a broad range of scarp behaviors, generating monoclinal, pressure ridge, and simple scarps—each of which can be modified by hanging wall collapse. The parameters that had the most influence on surface rupture patterns are fault displacement, fault dip, sediment depth, and sediment strength. The DEM results comprehensively describe the range of historic surface rupture observations in the Fault Displacement Hazards Initiative (FDHI) dataset with improved relationships obtained by incorporating additional information about the earthquake size, fault geometry, and surface deformation style. We suggest that this DEM dataset can be used to supplement field data and help forecast patterns of ground surface deformation in future earthquakes given specific anticipated source and site characteristics. 
    more » « less
  2. Abstract Two major earthquakes (MW7.8 and MW7.7) ruptured left-lateral strike-slip faults of the East Anatolian Fault Zone (EAFZ) on February 6, 2023, causing >59,000 fatalities and ~$119B in damage in southeastern Türkiye and northwestern Syria. Here we derived kinematic rupture models for the two events by inverting extensive seismic and geodetic observations using complex 5-6 segment fault models constrained by satellite observations and relocated aftershocks. The larger event nucleated on a splay fault, and then propagated bilaterally ~350 km along the main EAFZ strand. The rupture speed varied from 2.5-4.5 km/s, and peak slip was ~8.1 m. 9-h later, the second event ruptured ~160 km along the curved northern EAFZ strand, with early bilateral supershear rupture velocity (>4 km/s) followed by a slower rupture speed (~3 km/s). Coulomb Failure stress increase imparted by the first event indicates plausible triggering of the doublet aftershock, along with loading of neighboring faults. 
    more » « less
  3. Abstract Interferometric Synthetic Aperture Radar is an important tool for imaging surface deformation from large continental earthquakes. Here, we present maps of coseismic displacement and strain from the 2019 Ridgecrest earthquakes using multiple Sentinel-1 images. We provide three types of interferometric products. (1) Standard interferograms from two look directions provide an overview of the deformation and can be used for modeling coseismic slip. (2) Phase gradient maps from stacks of coseismic interferograms provide high-resolution (∼30  m) images of strain concentration and surface fracturing that can be used to guide field surveys. (3) High-pass filtered, stacked, unwrapped phase is decomposed into east–west and up–down, south–north components and is used to determine the sense of fault slip. The resulting phase gradient maps reveal over 300 surface fractures, including triggered slip on the Garlock fault. The east–west component of high-pass filtered phase reveals the polarity of the strike-slip offset (right lateral or left lateral) for many of the fractures. We find a small number of fractures that have slip polarity that is retrograde to the background tectonic stress. This is similar to observations of retrograde slip observed near the 1999 Mw 7.1 Hector Mine rupture, but the Ridgecrest observations are more completely imaged by the frequent and high-quality acquisitions from the twin Sentinel-1 spacecrafts. Determining whether the retrograde features are triggered slip on existing faults, or compliant fault deformation in response to stress changes from the Ridgecrest earthquakes, or new Coulomb-style failures, will require additional field work, modeling, and analysis. 
    more » « less
  4. On February 6, 2023, two large earthquakes occurred near the Turkish town of Kahramanmaraş. The moment magnitude (Mw) 7.8 mainshock ruptured a 310 km-long segment of the left-lateral East Anatolian Fault, propagating through multiple releasing step-overs. The Mw 7.6 aftershock involved nearby left-lateral strike-slip faults of the East Anatolian Fault Zone, causing a 150 km-long rupture. We use remote-sensing observations to constrain the spatial distribution of coseismic slip for these two events and the February 20 Mw 6.4 aftershock near Antakya. Pixel tracking of optical and synthetic aperture radar data of the Sentinel-2 and Sentinel-1 satellites, respectively, provide near-field surface displacements. High-rate Global Navigation Satellite System data constrain each event separately. Coseismic slip extends from the surface to about 15 km depth with a shallow slip deficit. Most aftershocks cluster at major fault bends, surround the regions of high coseismic slip, or extend outward of the ruptured faults. For the mainshock, rupture propagation stopped southward at the diffuse termination of the East Anatolian fault and tapered off northward into the Pütürge segment, some 20 km south of the 2020 Mw 6.8 Elaziğ earthquake, highlighting a potential seismic gap. These events underscore the high seismic potential of immature fault systems. 
    more » « less
  5. The 6 February 2023 Türkiye earthquakes and the accompanying aftershocks were a once-in-a-century catastrophe that has greatly impacted Türkiye and Syria. The repercussions of these events will have a lasting effect on the entire region. This article documents the geotechnical and geological observations performed by GEER (Geotechnical Extreme Events Reconnaissance) immediately following the events. Observations of ground damage, including surface fault rupture, liquefaction and lateral spreading, landslides and rock falls, and foundation failure of buildings, dams, and other civil infrastructure, are described herein. This article summarizes the key findings that were originally reported in the joint GEER-EERI (Earthquake Engineering Research Institute) reconnaissance report. The goal of these reconnaissance efforts is to document perishable data and disseminate it widely so that lessons can be learned from these events. 
    more » « less