skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Complexity of Robust Orbit Problems for Torus Actions and the abc-Conjecture
When a group acts on a set, it naturally partitions it into orbits, giving rise to orbit problems. These are natural algorithmic problems, as symmetries are central in numerous questions and structures in physics, mathematics, computer science, optimization, and more. Accordingly, it is of high interest to understand their computational complexity. Recently, Bürgisser et al. (2021) gave the first polynomial-time algorithms for orbit problems of torus actions, that is, actions of commutative continuous groups on Euclidean space. In this work, motivated by theoretical and practical applications, we study the computational complexity of robust generalizations of these orbit problems, which amount to approximating the distance of orbits in ℂⁿ up to a factor γ ≥ 1. In particular, this allows deciding whether two inputs are approximately in the same orbit or far from being so. On the one hand, we prove the NP-hardness of this problem for γ = n^Ω(1/log log n) by reducing the closest vector problem for lattices to it. On the other hand, we describe algorithms for solving this problem for an approximation factor γ = exp(poly(n)). Our algorithms combine tools from invariant theory and algorithmic lattice theory, and they also provide group elements witnessing the proximity of the given orbits (in contrast to the algebraic algorithms of prior work). We prove that they run in polynomial time if and only if a version of the famous number-theoretic abc-conjecture holds - establishing a new and surprising connection between computational complexity and number theory.  more » « less
Award ID(s):
1900460
PAR ID:
10658022
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Santhanam, Rahul
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Volume:
300
ISSN:
1868-8969
Page Range / eLocation ID:
14:1-14:48
Subject(s) / Keyword(s):
computational invariant theory geometric complexity theory orbit problems abc-conjecture closest vector problem Computing methodologies → Algebraic algorithms Computing methodologies → Combinatorial algorithms Theory of computation → Algebraic complexity theory
Format(s):
Medium: X Size: 48 pages; 1209084 bytes Other: application/pdf
Size(s):
48 pages 1209084 bytes
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The object of study of this paper is the following multi-determinantal algebraic variety, SINGn, m, which captures the symbolic determinant identity testing (SDIT) problem (a canonical version of the polynomial identity testing (PIT) problem), and plays a central role in algebra, algebraic geometry and computational complexity theory. SINGn, m is the set of all m-tuples of n×n complex matrices which span only singular matrices. In other words, the determinant of any linear combination of the matrices in such a tuple vanishes. The algorithmic complexity of testing membership in SINGn, m is a central question in computational complexity. Having almost a trivial probabilistic algorithm, finding an efficient deterministic algorithm is a holy grail of derandomization, and to top it, will imply super-polynomial circuit lower bounds! A sequence of recent works suggests efficient deterministic “geodesic descent” algorithms for memberships in a general class of algebraic varieties, namely the null cones of (reductive) linear group actions. Can such algorithms be used for the problem above? Our main result is negative: SINGn, m is not the null cone of any such group action! This stands in stark contrast to a non-commutative analog of this variety (for which such algorithms work), and points to an inherent structural difficulty of SINGn, m. In other words, we provide a barrier for the attempts of derandomizing SDIT via these algorithms. To prove this result we identify precisely the group of symmetries of SINGn, m. We find this characterization, and the tools we introduce to prove it, of independent interest. Our characterization significantly generalizes a result of Frobenius for the special case m=1 (namely, computing the symmetries of the determinant). Our proof suggests a general method for determining the symmetries of general algebraic varieties, an algorithmic problem that was hardly studied and we believe is central to algebraic complexity. 
    more » « less
  2. Oshman, Rotem (Ed.)
    In this work, we study the class of problems solvable by (deterministic) Adaptive Massively Parallel Computations in constant rounds from a computational complexity theory perspective. A language L is in the class AMPC⁰ if, for every ε > 0, there is a deterministic AMPC algorithm running in constant rounds with a polynomial number of processors, where the local memory of each machine s = O(N^ε). We prove that the space-bounded complexity class ReachUL is a proper subclass of AMPC⁰. The complexity class ReachUL lies between the well-known space-bounded complexity classes Deterministic Logspace (DLOG) and Nondeterministic Logspace (NLOG). In contrast, we establish that it is unlikely that PSPACE admits AMPC algorithms, even with polynomially many rounds. We also establish that showing PSPACE is a subclass of nonuniform-AMPC with polynomially many rounds leads to a significant separation result in complexity theory, namely PSPACE is a proper subclass of EXP^{Σ₂^{𝖯}}. 
    more » « less
  3. Chan, Timothy; Fischer, Johannes; Iacono, John; Herman, Grzegorz (Ed.)
    In the Directed Steiner Tree (DST) problem the input is a directed edge-weighted graph G = (V,E), a root vertex r and a set S ⊆ V of k terminals. The goal is to find a min-cost subgraph that connects r to each of the terminals. DST admits an O(log² k/log log k)-approximation in quasi-polynomial time [Grandoni et al., 2022; Rohan Ghuge and Viswanath Nagarajan, 2022], and an O(k^{ε})-approximation for any fixed ε > 0 in polynomial-time [Alexander Zelikovsky, 1997; Moses Charikar et al., 1999]. Resolving the existence of a polynomial-time poly-logarithmic approximation is a major open problem in approximation algorithms. In a recent work, Friggstad and Mousavi [Zachary Friggstad and Ramin Mousavi, 2023] obtained a simple and elegant polynomial-time O(log k)-approximation for DST in planar digraphs via Thorup’s shortest path separator theorem [Thorup, 2004]. We build on their work and obtain several new results on DST and related problems. - We develop a tree embedding technique for rooted problems in planar digraphs via an interpretation of the recursion in [Zachary Friggstad and Ramin Mousavi, 2023]. Using this we obtain polynomial-time poly-logarithmic approximations for Group Steiner Tree [Naveen Garg et al., 2000], Covering Steiner Tree [Goran Konjevod et al., 2002] and the Polymatroid Steiner Tree [Gruia Călinescu and Alexander Zelikovsky, 2005] problems in planar digraphs. All these problems are hard to approximate to within a factor of Ω(log² n/log log n) even in trees [Eran Halperin and Robert Krauthgamer, 2003; Grandoni et al., 2022]. - We prove that the natural cut-based LP relaxation for DST has an integrality gap of O(log² k) in planar digraphs. This is in contrast to general graphs where the integrality gap of this LP is known to be Ω(√k) [Leonid Zosin and Samir Khuller, 2002] and Ω(n^{δ}) for some fixed δ > 0 [Shi Li and Bundit Laekhanukit, 2022]. - We combine the preceding results with density based arguments to obtain poly-logarithmic approximations for the multi-rooted versions of the problems in planar digraphs. For DST our result improves the O(R + log k) approximation of [Zachary Friggstad and Ramin Mousavi, 2023] when R = ω(log² k). 
    more » « less
  4. Kumar, Amit; Ron-Zewi, Noga (Ed.)
    Dense subgraph discovery is an important problem in graph mining and network analysis with several applications. Two canonical polynomial-time solvable problems here are to find a maxcore (subgraph of maximum min degree) and to find a densest subgraph (subgraph of maximum average degree). Both of these problems can be solved in polynomial time. Veldt, Benson, and Kleinberg [Veldt et al., 2021] introduced the generalized p-mean densest subgraph problem which captures the maxcore problem when p = -∞ and the densest subgraph problem when p = 1. They observed that for p ≥ 1, the objective function is supermodular and hence the problem can be solved in polynomial time. In this work, we focus on the p-mean densest subgraph problem for p ∈ (-∞, 1). We prove that for every p ∈ (-∞,1), the problem is NP-hard, thus resolving an open question from [Veldt et al., 2021]. We also show that for every p ∈ (0,1), the weighted version of the problem is APX-hard. On the algorithmic front, we describe two simple 1/2-approximation algorithms for every p ∈ (-∞, 1). We complement the approximation algorithms by exhibiting non-trivial instances on which the algorithms simultaneously achieve an approximation factor of at most 1/2. 
    more » « less
  5. Stefano Leonardi and Anupam Gupta (Ed.)
    A probabilistic algorithm A is pseudodeterministic if, on every input, there exists a canonical value that is output with high probability. If the algorithm outputs one of k canonical values with high probability, then it is called a k-pseudodeterministic algorithm. In the study of pseudodeterminism, the Acceptance Probability Estimation Problem (APEP), which is to additively approximate the acceptance probability of a Boolean circuit, is emerging as a central computational problem. This problem admits a 2-pseudodeterministic algorithm. Recently, it was shown that a pseudodeterministic algorithm for this problem would imply that any multi-valued function that admits a k-pseudodeterministic algorithm for a constant k (including approximation algorithms) also admits a pseudodeterministic algorithm (Dixon, Pavan, Vinodchandran; ITCS 2021). The contribution of the present work is two-fold. First, as our main conceptual contribution, we establish that the existence of a pseudodeterministic algorithm for APEP is fundamentally related to the gap between probabilistic promise classes and the corresponding standard complexity classes. In particular, we show the following equivalence: APEP has a pseudodeterministic approximation algorithm if and only if every promise problem in PromiseBPP has a solution in BPP. A conceptual interpretation of this equivalence is that the algorithmic gap between 2-pseudodeterminism and pseudodeterminism is equivalent to the gap between PromiseBPP and BPP. Based on this connection, we show that designing pseudodeterministic algorithms for APEP leads to the solution of some open problems in complexity theory, including new Boolean circuit lower bounds. This equivalence also explains how multi-pseudodeterminism is connected to problems in SearchBPP. In particular, we show that if APEP has a pseudodeterministic algorithm, then every problem that admits a k(n)-pseudodeterministic algorithm (for any polynomial k) is in SearchBPP and admits a pseudodeterministic algorithm. Motivated by this connection, we also explore its connection to probabilistic search problems and establish that APEP is complete for certain notions of search problems in the context of pseudodeterminism. Our second contribution is establishing query complexity lower bounds for multi-pseudodeterministic computations. We prove that for every k ≥ 1, there exists a problem whose (k+1)-pseudodeterministic query complexity, in the uniform query model, is O(1) but has a k-pseudodeterministic query complexity of Ω(n), even in the more general nonadaptive query model. A key contribution of this part of the work is the utilization of Sperner’s lemma in establishing query complexity lower bounds. 
    more » « less