Abstract The distributions of iodate (IO3−), iodide (I−), nitrite (NO2−), and oxygen (O2) were determined on two zonal transects and one meridional transect in the Eastern Tropical North Pacific (ETNP) in 2018. Iodine is a useful tracer of in situ redox transformations and inputs within the water column from continental margins. In oxygenated waters, iodine is predominantly present as oxidized iodate. In the oxygen deficient zone (ODZ) in the ETNP, a substantial fraction is reduced to iodide, with the highest iodide concentrations coincident with the secondary nitrite maxima. These features resemble ODZs in the Arabian Sea and Eastern Tropical South Pacific (ETSP). Maxima in iodide and nitrite were associated with a specific water mass, referred to as the 13 °C Water, the same water mass that contains the highest concentrations of iodide within the ETSP. Physical processes leading to patchiness in the 13 °C Water relative to other water masses could account for the patchiness frequently observed in iodide and nitrite, probably reflecting subsurface mesoscale features such as eddies. Throughout much of the ETNP ODZ, iodine concentrations were higher than the mean oceanic value. This “excess iodine” is attributed to lateral inputs from sedimentary margins. Excess iodine maxima are centered within a potential density of 26.2–26.6 kg/m3, a density range that intersects with reducing shelf sediments and is almost identical to the ETSP. Evidently, margin input processes are significant throughout the basin and can influence the nitrogen and iron cycles as well, as in the ETSP.
more »
« less
Decadal oscillations in the ocean’s largest oxygen-deficient zone
The impact of global warming on the ocean’s oxygen-deficient zones (ODZs) is uncertain, partly because of a lack of data on past changes. We report monthly resolved records of coral skeleton–bound nitrogen isotopes (CS-δ15N) to reconstruct denitrification in the Eastern Tropical North Pacific (ETNP) ODZ over the last 80 years. The data indicate strong decadal variation in ETNP denitrification, with maxima during the cool North Pacific phase of Pacific Decadal Variability. The maxima in denitrification (and thus oxygen deficiency) were likely due to stronger upwelling that enhanced productivity leading to greater oxygen demand in the thermocline. Prior findings of multidecadal-to-centennial ODZ trends were likely biased by this variability. ODZ evolution over the next century will depend on how global warming interacts with the decadal oscillations.
more »
« less
- PAR ID:
- 10658856
- Publisher / Repository:
- Science
- Date Published:
- Journal Name:
- Science
- Volume:
- 386
- Issue:
- 6725
- ISSN:
- 0036-8075
- Page Range / eLocation ID:
- 1019 to 1024
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Biogeochemical cycling of Cd, Mn, and Ce in the Eastern Tropical North Pacific oxygen‐deficient zoneAbstract Oxygen‐deficient zones (ODZs) play an important role in the distribution and cycling of trace metals in the ocean, as important sources of metals including Fe and Mn, and also as possible sinks of chalcophile elements such as Cd. The Eastern Tropical North Pacific (ETNP) ODZ is one of the three largest ODZs worldwide. Here, we present results from two sectional surveys through the ETNP ODZ conducted in 2018, providing high‐resolution concentrations of several metals, along with complimentary measurements of nutrients and iodine speciation. We show that samples obtained from the ship's regular rosette are clean for Cd, Mn, Ni, and light rare earth elements, while uncontaminated Fe, Zn, Cu, and Pb samples cannot be obtained without a special trace‐metal clean sampling system. Our results did not show evidence of Cd sulfide precipitation, even within the most oxygen‐depleted water mass. High Mn and Ce concentrations and high Ce anomalies were observed in low‐oxygen seawater. These maxima were most pronounced in the upper water column below the oxycline, coincident with the secondary nitrite maxima and the lowest oxygen concentrations, in what is generally considered the most microbially active part of the water column. High Mn and Ce features were also coincident with maxima in excess iodine, a tracer of shelf sediment sources. Mn and Ce maxima were most prominent within the 13°C water mass, spanning a density horizon that enhances isopycnal transport from the shelf sediments, resulting in transport of Mn and Ce at least 2500 km offshore.more » « less
-
Oxygen Deficient Zones (ODZs) of the world’s oceans represent a relatively small fraction of the ocean by volume (<0.05% for suboxic and<5% for hypoxic) yet are receiving increased attention by experimentalists and modelers due to their importance in ocean nutrient cycling and predicted susceptibility to expansion and/or contraction forced by global warming. Conventional methods to study these biogeochemically important regions of the ocean have relied on well-developed but still relatively high cost and labor-intensive shipboard methods that include mass-spectrometric analysis of nitrogen-to-argon ratios (N2/Ar) and nutrient stoichiometry (relative abundance of nitrate, nitrite, and phosphate). Experimental studies of denitrification rates and processes typically involve eitherin-situorin-vitroincubations using isotopically labeled nutrients. Over the last several years we have been developing a Gas Tension Device (GTD) to study ODZ denitrification including deployment in the largest ODZ, the Eastern Tropical North Pacific (ETNP). The GTD measures total dissolved gas pressure from which dissolved N2concentration is calculated. Data from two cruises passing through the core of the ETNP near 17 °N in late 2020 and 2021 are presented, with additional comparisons at 12 °N for GTDs mounted on a rosette/CTD as well as modified profiling Argo-style floats. Gas tension was measured on the float with an accuracy of< 0.1% and relatively low precision (< 0.12%) when shallow (P< 200 dbar) and high precision (< 0.03%) when deep (P > 300 dbar). We discriminate biologically produced N2(ie., denitrification) from N2in excess of saturation due to physical processes (e.g., mixing) using a new tracer – ‘preformed excess-N2’. We used inert dissolved argon (Ar) to help test the assumption that preformed excess-N2is indeed conservative. We used the shipboard measurements to quantify preformed excess-N2by cross-calibrating the gas tension method to the nutrient-deficit method. At 17 °N preformed excess-N2decreased from approximately 28 to 12 µmol/kg over σ0 =24–27 kg/m3with a resulting precision of ±1 µmol N2/kg; at 12 °N values were similar except in the potential density range of 25.7< σ0< 26.3 where they were lower by 1 µmol N2/kg due likely to being composed of different source waters. We then applied these results to gas tension and O2(< 3 µmol O2/kg) profiles measured by the nearby float to obtain the first autonomous biogenic N2profile in the open ocean with an RMSE of ± 0.78 µM N2, or ± 19%. We also assessed the potential of the method to measure denitrification rates directly from the accumulation of biogenic N2during the float drifts between profiling. The results suggest biogenic N2rates of ±20 nM N2/day could be detected over >16 days (positive rates would indicate denitrification processes whereas negative rates would indicate predominantly dilution by mixing). These new observations demonstrate the potential of the gas tension method to determine biogenic N2accurately and precisely in future studies of ODZs.more » « less
-
Abstract Sedimentary δ15N (δ15Nsed) has been widely applied as a proxy for water column denitrification. When combined with additional productivity proxies, it provides insights into the driving forces behind long‐term changes in water column oxygenation. High‐resolution (~2 years) δ15Nsedand productivity proxy records (total organic carbon [TOC], Si/Ti, and Ca/Ti) from Santa Barbara Basin, California, were generated from a well‐dated Kasten core (SPR0901‐03KC). These records reveal the relationship between Southern California upwelling and oxygenation over the past 2,000 years. Inconsistencies between Si/Ti (coastal upwelling proxy) and TOC (total export productivity proxy) suggest wind curl upwelling influenced Southern California primary productivity, especially during intervals of weak coastal upwelling. Coherence between δ15Nsed, TOC, and drought indicators supports a local control of δ15Nsedby atmospheric circulation, as persistent northerly winds associated with an intensified North Pacific High pressure cell lead to enhanced coastal upwelling. In the northeast Pacific, δ15Nsedis used as a water mass tracer of denitrification signals transported north from the eastern tropical North Pacific (ETNP) via the California Undercurrent. A 1,200‐year δ15Nsedrecord from the Pescadero slope, Gulf of California, lies between denitrifying subsurface waters in the ETNP and Southern California. During the Medieval Climate Anomaly, coherence between Pescadero and Santa Barbara Basin δ15Nsedindicates connections between ETNP and Southern California on centennial timescales. Yet an out‐of‐phase relationship occurred when the Aleutian Low was anomalously strong during the Little Ice Age. We suggest intensified nutrient‐rich subarctic water advection might have transported high‐15N nitrate into Southern California when the California Undercurrent and ETNP denitrification weakened.more » « less
-
Abstract Oceanic oxygen deficient zones (ODZs) influence global biogeochemical cycles in a variety of ways, most notably by acting as a sink for fixed nitrogen (Codispoti et al. 2001). Optimum multiparameter analysis of data from two cruises in the Eastern Tropical North Pacific (ETNP) was implemented to develop a water mass analysis for the large ODZ in this region. This analysis reveals that the most pronounced oxygen deficient conditions are within the 13°C water (13CW) mass, which is distributed via subsurface mesoscale features such as eddies branching from the California Undercurrent. Nitrite accumulates within these eddies and slightly below the core of the 13CW. This water mass analysis also reveals that the 13CW and deeper Northern Equatorial Pacific Intermediate Water (NEPIW) act as the two Pacific Equatorial source waters to the California Current System. The Equatorial Subsurface Water and Subtropical Subsurface Water are synonymous with the 13CW and this study refers to this water mass as the 13CW based on its history. Since the 13CW has been found to dominate the most pronounced oxygen deficient conditions within the Eastern Tropical South Pacific ODZ and the Peru‐Chile Undercurrent, the 13CW and the NEPIW define boundaries for oxygen minimum conditions across the entire eastern Pacific Ocean.more » « less
An official website of the United States government

