skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 9, 2027

Title: Data report: X-ray fluorescence scanning of sediment cores, IODP Expedition 401 Site U1609, SW Iberia Atlantic margin (Portugal)
International Ocean Discovery Program Expedition 401 recovered 983 m of sediment from Portugal’s southwest margin in the northeast Atlantic Ocean at Site U1609 (37°22.6259′ N, 9°35.9120′ W; 1659.5 m water depth). This site was designed to recover the distal contourites deposited by the Mediterranean Overflow Water contour current from the late Miocene to the Pleistocene. We report semiquantitative elemental results from X-ray fluorescence scanning of sediment cores from Site U1609 (Holes U1609A and U1609B) scanned at a 4–5 cm resolution from ~202 to 509 m core depth below seafloor, Method A, equivalent to ~4.52 to ~7.8 Ma. Raw element intensities (in counts per second) for Al, Si, Ca, Ti, Mn, Fe, Rb, Sr, Zr, and Ba are presented here and correlated with lithofacies variations. We also identify biogenic-terrestrial input proportions and illustrate downcore cyclicity and correlation patterns between terrigenous components (Al, Si, Ti, Mn, and Ba), as well as their anticorrelations with biogenic (Ca and Sr) inputs. The cyclical variations in elemental ratios may help stratigraphic correlation between Holes U1609A and U1609B, astronomical tuning of the spliced record, and sedimentary interpretations of changes to the Mediterranean–Atlantic gateway and the bottom current circulation along the Atlantic margin of Portugal before, during, and after the Messinian Salinity Crisis.  more » « less
Award ID(s):
2412279
PAR ID:
10659111
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
International Ocean Discovery Program
Date Published:
Journal Name:
Proceedings of the International Ocean Discovery Program Expedition reports
Volume:
401
Issue:
201
ISSN:
2377-3189
ISBN:
978-1-954252-94-3
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Semiquantitative elemental results from X-ray fluorescence (XRF) scanning of sediment cores from International Ocean Discovery Program (IODP) Site U1574 in the Vøring Plateau, Norwegian Margin, are presented in this report. XRF elemental data were collected every 1 cm from a stratigraphically complete and continuous cored section with 102% recovery from the sea bottom to ~170 meters below seafloor in Hole U1574C. We report raw element intensities (counts) for Al, Si, K, Ca, Ti, Fe, Br, Sr, and Zr and identify covariation patterns consistent with lithofacies variations. Our high-resolution XRF scanning was conducted to better characterize the sediment depositional history at Site U1574 and to aid interpretation of past environmental and oceanographic conditions in the Norwegian Margin, targeting the earliest incursion of deep water into the young North Atlantic Ocean during the Early to Middle Eocene. The high-resolution XRF data also may help improve the age-depth model for the sediment succession at Site U1574. 
    more » « less
  2. International Ocean Discovery Program (IODP) Expeditions 390C, 395E, 390, and 393 recovered deepwater sediments from the western flank of the Mid-Atlantic Ridge in the South Atlantic Ocean along the South Atlantic Transect (SAT) at ~31°S. Collectively, these expeditions recovered ~2 km of sediment cores that have the potential to capture key features of Cenozoic climate change. In this report, we show semiquantitative bulk elemental results from X-ray fluorescence (XRF) scanning of the sediment cores from IODP Site U1560 recovered during Expeditions 395E and 393. The oceanic basement at this site is ~15 My old, making it the second youngest of the SAT sites located west of the Mid-Atlantic Ridge. Here, XRF data are compared with pass-through magnetic susceptibility and natural gamma radiation of the sediment cores, measured aboard JOIDES Resolution. The resulting trends and correlations highlight elemental variations through time, mainly reflecting lithologic and compositional differences. At Site U1560, Ca counts reflect the occurrence of nannofossil ooze, which is the dominant lithology for the whole site. In the Miocene-aged Lithologic Units IE–IA from 140 to 50 m core composite depth below seafloor (CCSF), several high-intensity spikes of detrital elements (i.e., Fe, Ti, Al, Si, and Zr) correspond to intervals of clay-rich nannofossil ooze. Detrital elemental counts in the entire Pliocene record (50 to ~25 m CCSF) are the lowest. A sharp shift is observed at the Pliocene/Pleistocene boundary at ~25 m CCSF, with the uppermost Pleistocene record showing high-frequency and high-intensity variations in siliciclastic elements, which correlates well with the pass-through magnetic susceptibility. 
    more » « less
  3. We report semiquantitative elemental data from X-ray fluorescence (XRF) scanning of Site U1558 sediment cores drilled during International Ocean Discovery Program Expeditions 390C and 393. These expeditions, together with Expeditions 395E and 390, form the South Atlantic Transect, which collected sediment and basement cores from the western flank of the southern Mid-Atlantic Ridge. XRF scanning of the continuous splice of Site U1558, using Holes U1558A and U1558F, was conducted at three acceleration voltages to capture a range of major, minor, and trace elements. At Site U1558, positive correlations exist between terrigenous-sourced elements (Al, Si, Ti, and Fe) and a negative correlation exists between the terrigenous-sourced elements and Ca. XRF geochemistry is correlated with lithologic changes, most notably at the boundary of Lithologic Units I and II, where Unit I is brown and reddish brown nannofossil-rich clay and Unit II is pink, pinkish white, pinkish gray, and light brown nannofossil ooze and chalk with varying amounts of clay and foraminifera. Peaks in XRF data align with the boundaries of Lithologic Subunits IIA and IIB and Subunits IIB and IIC. 
    more » « less
  4. The Iberian margin is a well-known source of rapidly accumulating sediment that contains a high-fidelity record of millennial climate variability (MCV) for the late Pleistocene. The late Sir Nicholas (Nick) Shackleton demonstrated that piston cores from the region can be correlated precisely to polar ice cores in both hemispheres. Moreover, the narrow continental shelf off Portugal results in the rapid delivery of terrestrial material to the deep-sea environment, thereby permitting correlation of marine and ice core records to European terrestrial sequences. Few places exist in the world where such detailed marine-ice-terrestrial linkages are possible. The continuity, high sedimentation rates, and fidelity of climate signals preserved in Iberian margin sediments make this region a prime target for ocean drilling. During Integrated Ocean Drilling Program Expedition 339 (Mediterranean Outflow), one of the sites proposed here was drilled to a total depth of 155.9 meters below seafloor in multiple holes. At Site U1385 (the “Shackleton site”) a complete record of hemipelagic sedimentation was recovered for the last 1.45 My corresponding to Marine Isotope Stage 47 with sedimentation rates of 10–20 cm/ky. Preliminary results from Site U1385 demonstrate the great promise of the Iberian margin to yield long records of millennial-scale climate change and land–sea comparisons. International Ocean Discovery Program (IODP) Expedition 397 will extend this remarkable sediment archive through the Pliocene and expand the depth range of available sites by drilling additional sequences in water depths from 1304 to 4686 meters below sea level (mbsl). This depth transect is designed to complement those sites drilled during Expedition 339 (560–1073 mbsl) where sediment was recovered at intermediate water depth under the influence of Mediterranean Outflow Water (MOW). Together, the sites recovered during Expeditions 339 and 397 will constitute a complete depth transect with which to study past variability of all the major subsurface water masses of the eastern North Atlantic. Because most of the mass, thermal inertia, and carbon in the ocean-atmosphere system is contained in the deep ocean, well-placed depth transects in each of the major ocean basins are needed to understand the underlying mechanisms of glacial–interglacial cycles and MCV. We have identified four primary sites (SHACK-4C, SHACK-10B, SHACK-11B, and SHACK-14A) at which multiple holes will be drilled to ensure complete recovery of the stratigraphic sections at each site, ranging in age from the latest Miocene to Holocene. Building on the success of Site U1385 and given the seminal importance of the Iberian margin for paleoclimatology and marine-ice-terrestrial correlations, the cores recovered during Expedition 397 will provide present and future generations of paleoceanographers with the raw material needed to reconstruct the North Atlantic climate at high temporal resolution for the entire Quaternary and Pliocene. 
    more » « less
  5. ABSTRACT The trace element composition of planktic foraminifera shells is influenced by both environmental and biological factors (‘vital effects’). As trace elements in individual foraminifera shells are increasingly used as paleoceanographic tools, understanding how trace element ratios vary between individuals, among species, and in response to high frequency environmental variability is of critical importance. Here, we present a three-year plankton tow record (2010–2012) of individual shell trace element (Mg, Sr, Ba, and Mn) to Ca ratios in the planktic species Globigerina ruber (pink), Orbulina universa, and Globorotalia menardii collected throughout the upper 100 m of Cariaco Basin. Plankton tows were paired with in situ measurements of water column chemistry and hydrography. The Mg/Ca ratio reflects different calcification temperatures in all three species when calculated using species-specific temperature relationships from single-species averages of Mg/Ca. However, individual shell Mg/Ca often results in unrealistic temperate estimates. The Sr/Ca ratios are relatively constant among the four species. Ratios of Mn/Ca and Ba/Ca are highest in G. menardii and are not reflective of elemental concentrations in open waters. The Mn/Ca ratio is elevated in all species during upwelling conditions, and a similar trend is demonstrated in Neogloboquadrina incompta shells from the California margin collected during upwelling periods. Together this suggests that elevated shell Mn/Ca may act as a tracer for upwelling of deeper water masses. Our results emphasize the large degree of trace element variability present among and within species living within a limited depth habitat and the roles of biology, calcification environment, and physical mixing in mediating how trace element geochemistry reflects environmental variability in the surface ocean. 
    more » « less