Petrologic and geochronologic data for metapelitic lower crustal xenoliths from New Mexico (USA) and Chihuahua (Mexico) states provide evidence for both a magmatic and collisional component to the enigmatic Mesoproterozoic Picuris orogeny. These garnet-sillimanite-bearing metapelites are found within the southern Rio Grande rift at Kilbourne Hole and Potrillo Maar in southern New Mexico and northern Chihuahua. Geothermobarometry and rutile with Quaternary U-Pb dates indicate equilibration in the local lower crust, which is actively undergoing ultra-high temperature (UHT) metamorphism (Cipar et al., 2020). The samples contain older detrital zircons dating back to the Paleoproterozoic, marking their deposition at the surface. Coupled zircon U-Pb dates and trace-element ratios (e.g., Gd/Yb) show a clear transition from oscillatory-zoned, low-Gd/Yb detrital magmatic zircon to featureless, high-Gd/Yb metamorphic zircon between 1500 and 1400 Ma, marking the transition from subduction to collision during this period. Metamorphic zircon and monazite grew in two major intervals. The first, between ca. 1450 and 1350 Ma, documents the journey of the sediments to depth within the orogen and provides evidence of extended Mesoproterozoic metamorphism in the region. The second corresponds with UHT metamorphism that commenced at ca. 32 Ma and is associated with the Rio Grande rift. Whereas nearly all garnets are homogeneous in both major and trace elements, a single garnet from one sample has a core defined by abundant quartz and acicular sillimanite inclusions. The core and rim of this garnet is homogeneous in major and most trace elements, but the rim is enriched in the slowest diffusing elements, Zr and Hf, which likely indicates rim growth at higher temperatures. We interpret the garnet core to have grown at the time of emplacement of the sediments into the lower crust. Because this occurred in the sillimanite stability field and because the metamorphic zircon and monazite all have negative Eu anomalies, indicating their equilibration with feldspar (stable at depths of <45 km), we conclude that the sediments were not emplaced via subduction and/or relamination of forearc sediments, but were instead metamorphosed under warmer, shallower conditions in an orogenic setting. Collectively, the data point to a collisional orogen during the inferred timing of the Picuris orogeny. These samples may therefore define the location of the Picuris suture zone, a key feature of this orogenic event.
more »
« less
This content will become publicly available on January 1, 2027
Vanishing Evidence of Ultrahigh‐Pressure Metamorphism: A Case Study of the Rhodope Metamorphic Complex, Greece
Evidence of metamorphism at ultrahigh‐pressure (UHP) conditions is documented by the presence of coesite, diamond and/or majoritic garnet. However, the growth of UHP‐stable phases such as majoritic garnet is often volumetrically low, and overprinting during exhumation can obscure evidence of UHP growth, making it difficult to positively identify UHP rocks. In this study, we selected garnet‐kyanite schists from three microdiamond‐bearing localities within the Rhodope Metamorphic Complex, located in eastern Greece. Samples from Xanthi, Sidironero, and Kimi have similar bulk rock compositions, but the pressure–temperature (P–T) paths differ. Because the major phases record vanishingly little evidence of metamorphism at UHP conditions, we analyzed zircon grains with complex textures to evaluate if zircon preserves a record of UHP metamorphism. Zircon grains from all localities have cores and rims separated by a characteristic interface domain, as revealed by cathodoluminescence (CL) imaging. The detrital igneous cores range in age from c. 2.5 Ga to 220 Ma and exhibit a negative Eu* anomaly, a Yb/Gd of 10–100, and variable Th/U (0–1.2). Rims yield dates of 150–125 Ma with Yb/Gd of 0.1–10 and Th/U of 0–0.2. Interface domains yield dates 165–145 Ma with Yb/Gd ranging between 0–1000 and Th/U < 0.2. We interpret the distinctive CL textures and Yb/Gd of the interface domains as evidence of zircon that reacted at UHP. The interface domain in zircon from all petrographic contexts yields variable Yb/Gd ratios that are significantly higher than both cores and rims. We therefore interpret that zircon recrystallized via interface‐coupled dissolution–reprecipitation reaction; this process preferentially partitioned heavy rare earth elements within the interface domain, which explains the higher Yb/Gd ratios. The rim domains equilibrated with the matrix, producing a relatively homogeneous and low Yb/Gd ratio in these domains. The spatial extent and degree of preservation of interface domains are interpreted as a function of the P–T path and minor variations in bulk composition. Interface domains are best preserved in rocks from Xanthi and Sidironero; in these samples, thin, homogeneous, garnet‐stable rims only partially overprint and crosscut the interface domain. In contrast, rocks from Kimi followed a higher‐temperature trajectory and the zircon grains grew large rim domains that overprinted much of the interface domain and the detrital core. Zircon grains from plagioclase‐rich versus quartz‐rich domains within samples from Sidironero show differences in texture, which indicates that local bulk composition can affect what evidence of UHP metamorphism is preserved. Collectively, these samples provide a new, durable marker of metamorphism in UHP rocks and yield new insight about which factors affect the preservation of UHP textures.
more »
« less
- PAR ID:
- 10659268
- Publisher / Repository:
- Journal of Metamorphic Geology
- Date Published:
- Journal Name:
- Journal of Metamorphic Geology
- Volume:
- 44
- Issue:
- 1
- ISSN:
- 0263-4929
- Page Range / eLocation ID:
- 1 to 19
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract High‐precision dating of the metamorphic sole of ophiolites can provide insight into the tectonic evolution of ophiolites and subduction zone processes. To understand subduction initiation beneath a young, well‐preserved and well‐characterized ophiolite, we performed coupled zircon laser‐ablation inductively coupled mass spectrometry trace element analyses and high‐precision isotope dilution‐thermal ionization mass spectrometry U–Pb dating on 25 samples from the metamorphic sole of the Samail ophiolite (Oman‐United Arab Emirates). Zircon grains from amphibolite‐ to granulite‐facies (0.8–1.3 GPa, ~700–900°C), garnet‐ and clinopyroxene‐bearing amphibolite samples (n = 18) show systematic trends of decreasing heavy rare earth element slope (HREE; Yb/Dy) with decreasing Yb concentration, reflecting progressive depletion of the HREE during prograde garnet growth. For half of the garnet‐clinopyroxene amphibolite samples, Ti‐in‐zircon temperatures increase, and U–Pb dates young with decreasing HREE slope, consistent with coupled zircon and garnet growth during prograde metamorphism. In the remaining samples, there is no apparent variation in Ti‐in‐zircon temperature with decreasing HREE slope, and the combined U–Pb and geochemical data suggest zircon crystallization along either the prograde to peak or prograde to initial retrograde portions of the metamorphicP–T–tpath. The new data bracket the timing of prograde garnet and zircon growth in the highest grade rocks of the metamorphic sole between 96.698 ± 0.094 and 95.161 ± 0.064 Ma, in contrast with previously published geochronology suggesting prograde metamorphism at ~104 Ma. Garnet‐free amphibolites and leucocratic pods from lower grade (but still upper amphibolite facies) portions of the sole are uniformly HREE enriched (Yb/Dy > 5) and are ~0.5–1.3 Myr younger than the higher grade rocks from the same localities, constraining the temporal offset between the metamorphism and juxtaposition of the higher and lower grade units. Positive zircon εHf(+6.5 to +14.6) for all but one of the dated amphibolites are consistent with an oceanic basalt protolith for the sole. Our new data indicate that prograde sole metamorphism (96.7–95.2 Ma) immediately predated and overlapped growth of the overlying ophiolite crust (96.1–95.2 Ma). The ~600 ky offset between the onset of sole metamorphism in the northern portion of the ophiolite versus the start of ophiolite magmatism is an order of magnitude shorter than previously proposed (~8 Ma) and is consistent with either spontaneous subduction initiation or an abbreviated period of initial thrusting during induced subduction initiation. Taken together, the sole and ophiolite crust preserve a record of the first ~1.5 Myr of subduction. A gradient in the initiation of high‐grade metamorphism from the northwest (96.7 Ma) to southeast (96.0–95.7 Ma) may record propagation of the nascent subduction zone and/or variations in subduction rate along the length of the ophiolite.more » « less
-
Abstract Zircon grains from the metasedimentary lower crust of the Rio Grande Rift, New Mexico, preserve a metamorphic record of the transition from Laramide compression to Eocene extension. Zircon U‐Pb isotopes and trace‐element concentrations from five two‐pyroxene metaigneous granulite xenoliths define discrete populations: older zircon cores (∼15–50 Ma) that are depleted in heavy rare‐earth elements (HREE) but Ti‐rich, and younger zircon rims (∼3–15 Ma) with elevated HREE and lower Ti concentrations. Coupled phase equilibria and garnet‐melt‐zircon trace‐element partitioning calculations show that the older zircon cores equilibrated in thick (>40 km), hot (800–900°C), garnet‐bearing lower crust during the cessation of compression at the end of the Laramide orogeny. Zircon rim domains equilibrated at lower pressures, consistent with >9 km of thinning of the lower crust. Thermal‐kinematic calculations show that these pressure‐temperature‐time constraints require thinning of the lithospheric mantle prior to and during regional Cenozoic extension. Convective erosion of the mantle lithosphere over tens of millions of years, possibly facilitated by dynamics of the Farallon slab, provides a mechanism to facilitate lower crustal heating and extension.more » « less
-
Zircon U-Pb, and garnet Sm-Nd and Lu-Hf dates provide important constraints on local and orogenic scale processes in lower-crustal rocks. However, in high-temperature metamorphic rocks these isotopic systems typically yield significant ranges reflecting both igneous and metamorphic processes. Therefore, linking dates to specific aspects of rock history can be problematic. In Fiordland, New Zealand, granulite-facies orthogneiss is cut by leucosomes that are bordered by garnet clinopyroxene reaction zones (garnet reaction zones). In both host orthogneiss and garnet reaction zones, zircon are typically anhedral with U-Pb dates ranging from 118.30 ± 0.13 to 115.70 ± 0.18 Ma (CA-ID-TIMS) and 121.4 ± 2.0 to 109.8 ± 1.8 Ma (SHRIMP-RG). Zircon dates in host and garnet reaction zone do not define distinct populations. In addition, the dates cannot be readily grouped based on external morphology or internal CL zoning. Zircon trace-element concentrations indicate two distinct crystallization trends, clearly seen in Th and U. Garnet occurs in selvages to the leucosome veins and in the adjacent garnet reaction zones. In selvages and host orthogneiss, garnet is generally 0.5 to 1 cm diameter and euhedral and is 0.1 to 0.5 cm diameter and subhedral in garnet reaction zones. Garnet Sm-Nd and Lu-Hf dates range from ca. 115 to 101 Ma (including uncertainties) and correlate with grain size. We interpret the CA-ID-TIMS zircon dates to record the age of magma emplacement and the SHRIMP-RG dates to record a range from igneous crystallization to metamorphic dissolution and reprecipitation and/or local Pb loss. Zircon compositional trends within the garnet reaction zone and host are compatible with locally isolated melt and/or separate intrusive magma batches for the two samples described here. Dates for the largest, ~1 cm, garnet of ~113 Ma record growth during metamorphism, while the smaller grains with younger dates reflect high-temperature intracrystalline diffusion and isotopic closure during cooling. The comprehensive geochronological data set for a single location in the Malaspina Pluton illustrates a complex and protracted geologic history common in granulite facies rocks, estimates lower crustal cooling rates of ~20 °C/m.y., and underlines the importance of multiple chronometers and careful textural characterization for assigning meaningful ages to lower-crustal rocks. Numerous data sets from single locations, like the one described here, are needed to evaluate the spatial extent and variation of cooling rates for Fiordland and other lower crustal exposures.more » « less
-
Interpretation of geochronological and petrological data from partially-melted granulite is challenging. However, integration of multiple chronometers and mineral assemblage diagrams (MAD) can be used to estimate the nature and duration of processes. Excellent lower-crustal exposures of garnet granulite from the Malaspina Pluton, Fiordland New Zealand provide an ideal place to employ this kitchen sink approach. We use zircon U-Pb ages from LA-ICPMS, SHRIMP-RG, and CA-TIMS, garnet Lu-Hf and Sm-Nd ages, and MAD in order to evaluate local partial melting vs. melt injection, equilibrium volumes, P-T conditions, and the duration of lower crustal thermal events. Host diorite (H), garnet-clinopyroxene reaction zones (GRZ), coarse garnet selvages, and tonalite veins provide a record of intrusion and granulite facies partial melting. Zircon U-Pb ages range from 123 to 107 Ma (all); LA-ICPMS ages contain the entire range; CA-TIMS ages range from 118.30±0.13 to 115.7±0.18 Ma; and SHRIMP-RG ages range from 121.4±2 to 109.8±1.8 Ma. The latter two techniques are interpreted to indicate primary igneous crystallization from ~119 to ~116 Ma and the youngest ~110 Ma ages are interpreted as metamorphic zircon growth. Garnet ages for ~1 cm grains are ~113 Ma (Lu-Hf & Sm-Nd) and record metamorphic growth, and <0.3 mm grains with Sm-Nd ages from 113 to 104 Ma reflect high temperature intracrystalline diffusion and isotopic closure during cooling to amphibolite facies. Zircon trace-element compositions indicate 2 distinct crystallization trends reflecting evolution of primary magma batches. MAD indicate that garnet was not in equilibrium with sampled rock compositions. Instead, garnet shows apparent equilibrium with a modeled mixture of the GRZ and the H and grew in equilibrium with an effective bulk composition that shifted toward the leucosome. This would produce the observed increase in garnet grossular content. We conclude that: Malaspina rocks from Crooked Arm preserve evidence for 2 igneous layers which evolved as discrete magmas, igneous crystallization lasted 2 to 3 m.y., granulite metamorphism peaked ~ 3 m.y. after intrusion, metamorphism lasted ≥3 m.y., cooling occurred at ~20°C/m.y., and granulite minerals equilibrated with a mixture of solid phases and melt at ~14 kbar and 920°C (based on garnet compositions and MAD).more » « less
An official website of the United States government
