skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 3, 2026

Title: X-ResQ: Parallel Reverse Annealing for Quantum Maximum-Likelihood MIMO Detection with Flexible Parallelism
Quantum Annealing (QA)-accelerated MIMO detection is an emerging research approach in the context of NextG wireless networks. The opportunity is to enable large MIMO systems and thus improve wireless performance. The approach aims to leverage QA to expedite the computation required for theoretically optimal but computationally-demanding Maximum Likelihood detection to overcome the limitations of the currently deployed linear detectors. This paper presents X-ResQ, a QA-based MIMO detector system featuring flexible parallelism that is uniquely enabled by quantum Reverse Annealing (RA). Unlike prior designs, X-ResQ has many desirable parallel QA system properties and has effectively improved detection performance as more qubits are assigned. In our evaluations on a state-of-the-art quantum annealer, fully parallel X-ResQ achieves near-optimal throughput for 4 ×6 MIMO with 16-QAM using approx. 240 qubits achieving 2.5–5× gains compared against other classical and quantum detectors. We also implement and evaluate X-ResQ in the non-quantum digital setting for more comprehensive evaluations. This classical X-ResQ showcases the potential to realize ultra-large 1024 ×1024 MIMO, significantly outperforming other MIMO detectors, including the state-of-the-art RA detector classically implemented in the same way.  more » « less
Award ID(s):
1824357 2232457
PAR ID:
10659303
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACM
Date Published:
ISBN:
979-8-4007-1129-9
Page Range / eLocation ID:
604 to 619
Format(s):
Medium: X
Location:
Hong Kong, SAR
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Overcoming the conventional trade-off between throughput and bit error rate (BER) performance, versus computational complexity is a long-term challenge for uplink Multiple-Input Multiple-Output (MIMO) detection in base station design for the cellular 5G New Radio roadmap, as well as in next generation wireless local area networks. In this work, we present ParaMax, a MIMO detector architecture that for the first time brings to bear physics-inspired parallel tempering algorithmic techniques [28, 50, 67] on this class of problems. ParaMax can achieve near optimal maximum-likelihood (ML) throughput performance in the Large MIMO regime, Massive MIMO systems where the base station has additional RF chains, to approach the number of base station antennas, in order to support even more parallel spatial streams. ParaMax is able to achieve a near ML-BER performance up to 160 × 160 and 80 × 80 Large MIMO for low-order modulations such as BPSK and QPSK, respectively, only requiring less than tens of processing elements. With respect to Massive MIMO systems, in 12 × 24 MIMO with 16-QAM at SNR 16 dB, ParaMax achieves 330 Mbits/s near-optimal system throughput with 4--8 processing elements per subcarrier, which is approximately 1.4× throughput than linear detector-based Massive MIMO systems. 
    more » « less
  2. Quantum annealing (QA) is a promising optimization technique used to find global optimal solution of a combinatorial optimization problem by leveraging quantum fluctuations. In QA, the problem being solved is mapped onto the quantum processing unit (QPU) composed of qubits through a procedure called minor-embedding. The qubits are connected by a network of couplers, which determine the strength of the interactions between the qubits. The strength of the couplers that connect qubits within a chain is often referred to as the chain strength. The appropriate balance of chain strength is equally imperative in enabling the qubits to interact with one another in a way that is strong enough to obtain the optimal solution, but not excessively strong so as not to bias the original problem terms. To this end, we address the problem of identifying the optimal chain strength through the utilization of Path Integral Monte Carlo (PIMC) quantum simulation algorithm. The results indicate that our judicious choice of chain strength parameter facilitates enhancements in quantum annealer performance and solution quality, thereby paving the way for QA to compete with, or potentially outperform, classical optimization algorithms. 
    more » « less
  3. null (Ed.)
    In a multi-user system with multiple antennas at the base station, precoding techniques in the downlink broadcast channel allow users to detect their respective data in a non-cooperative manner. Vector Perturbation Precoding (VPP) is a non-linear variant of transmit-side channel inversion that perturbs user data to achieve full diversity order. While promising, finding an optimal perturbation in VPP is known to be an NP-hard problem, demanding heavy computational support at the base station and limiting the feasibility of the approach to small MIMO systems. This work proposes a radically different processing architecture for the downlink VPP problem, one based on Quantum Annealing (QA), to enable the applicability of VPP to large MIMO systems. Our design reduces VPP to a quadratic polynomial form amenable to QA, then refines the problem coefficients to mitigate the adverse effects of QA hardware noise. We evaluate our proposed QA based VPP (QAVP) technique on a real Quantum Annealing device over a variety of design and machine parameter settings. With existing hardware, QAVP can achieve a BER of 10 −4 with 100µs compute time, for a 6 × 6 MIMO system using 64 QAM modulation at 32 dB SNR. 
    more » « less
  4. We present Quantum Belief Propagation (QBP), a Quantum Annealing (QA) based decoder design for Low Density Parity Check (LDPC) error control codes, which have found many useful applications in Wi-Fi, satellite communications, mobile cellular systems, and data storage systems. QBP reduces the LDPC decoding to a discrete optimization problem, then embeds that reduced design onto quantum annealing hardware. QBP's embedding design can support LDPC codes of block length up to 420 bits on real state-of-the-art QA hardware with 2,048 qubits. We evaluate performance on real quantum annealer hardware, performing sensitivity analyses on a variety of parameter settings. Our design achieves a bit error rate of 10--8 in 20 μs and a 1,500 byte frame error rate of 10--6 in 50 μs at SNR 9 dB over a Gaussian noise wireless channel. Further experiments measure performance over real-world wireless channels, requiring 30 μs to achieve a 1,500 byte 99.99% frame delivery rate at SNR 15-20 dB. QBP achieves a performance improvement over an FPGA based soft belief propagation LDPC decoder, by reaching a bit error rate of 10--8 and a frame error rate of 10--6 at an SNR 2.5--3.5 dB lower. In terms of limitations, QBP currently cannot realize practical protocol-sized (e.g., Wi-Fi, WiMax) LDPC codes on current QA processors. Our further studies in this work present future cost, throughput, and QA hardware trend considerations. 
    more » « less
  5. We present the Hybrid Polar Decoder (HyPD), a hybrid classical-quantum decoder design for Polar error correction codes, which are becoming widespread in today’s 5G and tomorrow’s 6G networks. HyPD employs CMOS processing for the Polar decoder’s binary tree traversal, and Quantum Annealing (QA) processing for the Quantum Polar Decoder (QPD)-a Maximum-Likelihood QA-based Polar decoder submodule. QPD’s design efficiently transforms a Polar decoder into a quadratic polynomial optimization form, then maps this polynomial on to the physical QA hardware via QPD-MAP, a customized problem mapping scheme tailored to QPD. We have experimentally evaluated HyPD on a state-of-the-art QA device with 5,627 qubits, for 5G-NR Polar codes with block length of 1,024 bits, in Rayleigh fading channels. Our results show that HyPD outperforms Successive Cancellation List decoders of list size eight by half an order of bit error rate magnitude, and achieves a 1,500-bytes frame delivery rate of 99.1%, at 1 dB signal-to-noise ratio. Further studies present QA compute time considerations. We also propose QPD-HW, a novel QA hardware topology tailored for the task of decoding Polar codes. QPD-HW is sparse, flexible to code rate and block length, and may be of potential interest to the designers of tomorrow’s 6G wireless networks. 
    more » « less