skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Orbital and Physical Properties of the Pleiades Binary 27 Tau (Atlas)
Abstract We report new spectroscopic and interferometric observations of the Pleiades binary star Atlas, which played an important role nearly 3 decades ago in settling the debate over the distance to the cluster from ground-based and space-based determinations. We use the new measurements, together with other published and archival astrometric observations, to improve the determination of the 291 day orbit and the distance to Atlas (136.2 ± 1.4 pc). We also derive the main properties of the components, including their absolute masses (5.04 ± 0.17Mand 3.64 ± 0.12M), sizes, effective temperatures, projected rotational velocities, and chemical compositions. We find that the more evolved primary star is rotationally distorted, and we are able to estimate its oblateness and the approximate orientation of its spin axis from the interferometric observations. The spin axis may well be aligned with the orbital axis. Models of stellar evolution from the Modules for Experiments in Stellar Astrophysics (or MESA) that account for rotation provide a good match to all of the primary’s global properties, and point to an initial angular rotation rate on the zero-age main sequence of about 55% of the breakup velocity. The current location of the star in the Hertzsprung–Russell diagram is near the very end of the hydrogen-burning main sequence, at an age of about 105 Myr, according to these models. Our spectroscopic analysis of the more slowly rotating secondary indicates that it is a helium-weak star, with other chemical anomalies.  more » « less
Award ID(s):
2407956 2034336
PAR ID:
10659332
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Astronomical Society / IOP
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
990
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
107
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Stellar spin down is a critical yet poorly understood component of stellar evolution. In particular, results from the Kepler Mission imply that mature age, solar-type stars have inefficient magnetic braking, resulting in a stalled spin-down rate. However, a large number of precise asteroseismic ages are needed for mature (≥3 Gyr) stars in order to probe the regime where traditional and stalled spin-down models differ. In this paper, we present a new asteroseismic benchmark star for gyrochronology discovered using reprocessed Kepler short cadence data. KIC 11029516 (Papayu) is a bright (Kp= 9.6 mag) solar-type star with a well-measured rotation period (21.1 ± 0.8 days) from spot modulation using 4 yr of Kepler long-cadence data. We combine asteroseismology and spectroscopy to obtainTeff= 5888 ± 100 K, [Fe/H] = 0.30 ± 0.06 dex,M= 1.24 ± 0.05M,R= 1.34 ± 0.02R, and age of 4.0 ± 0.4 Gyr, making Papayu one of the most similar stars to the Sun in terms of temperature and radius with an asteroseismic age and a rotation period measured from spot modulation. We find that Papayu sits at the transition of where traditional and weakened spin-down models diverge. A comparison with stars of similar zero-age main-sequence temperatures supports previous findings that weakened spin-down models are required to explain the ages and rotation periods of old solar-type stars. 
    more » « less
  2. Abstract We present a comprehensive catalog of observations and stellar population properties for 23 highly secure host galaxies of fast radio bursts (FRBs). Our sample comprises 6 repeating FRBs and 17 apparent nonrepeaters. We present 82 new photometric and 8 new spectroscopic observations of these hosts. Using stellar population synthesis modeling and employing nonparametric star formation histories (SFHs), we find that FRB hosts have a median stellar mass of ≈109.9M, mass-weighted age ≈5.1 Gyr, and ongoing star formation rate ≈1.3Myr−1but span wide ranges in all properties. Classifying the hosts by degree of star formation, we find that 87% (20 of 23 hosts) are star-forming, two are transitioning, and one is quiescent. The majority trace the star-forming main sequence of galaxies, but at least three FRBs in our sample originate in less-active environments (two nonrepeaters and one repeater). Across all modeled properties, we find no statistically significant distinction between the hosts of repeaters and nonrepeaters. However, the hosts of repeating FRBs generally extend to lower stellar masses, and the hosts of nonrepeaters arise in more optically luminous galaxies. While four of the galaxies with the clearest and most prolonged rises in their SFHs all host repeating FRBs, demonstrating heightened star formation activity in the last ≲100 Myr, one nonrepeating host shows this SFH as well. Our results support progenitor models with short delay channels (i.e., magnetars formed via core-collapse supernova) for most FRBs, but the presence of some FRBs in less-active environments suggests a fraction form through more delayed channels. 
    more » « less
  3. Abstract We present stellar rotation periods for late K- and early M-dwarf members of the 4 Gyr old open cluster M67 as calibrators for gyrochronology and tests of stellar spin-down models. Using Gaia EDR3 astrometry for cluster membership and Pan-STARRS (PS1) photometry for binary identification, we build this set of rotation periods from a campaign of monitoring M67 with the Canada–France–Hawaii Telescope’s MegaPrime wide-field imager. We identify 1807 members of M67, of which 294 are candidate single members with significant rotation period detections. Moreover, we fit a polynomial to the period versus color-derived effective temperature sequence observed in our data. We find that the rotation of very cool dwarfs can be explained by simple solid-body spin-down between 2.7 and 4 Gyr. We compare this rotational sequence to the predictions of gyrochronological models and find that the best match is Skumanich-like spin-down,Prot∝t0.62, applied to the sequence of Ruprecht 147. This suggests that, for spectral types K7–M0 with near-solar metallicity, once a star resumes spinning down, a simple Skumanich-like relation is sufficient to describe their rotation evolution, at least through the age of M67. Additionally, for stars in the range M1–M3, our data show that spin-down must have resumed prior to the age of M67, in conflict with the predictions of the latest spin-down models. 
    more » « less
  4. Abstract To accurately characterize the planets a star may be hosting, stellar parameters must first be well determined.τCeti is a nearby solar analog and often a target for exoplanet searches. Uncertainties in the observed rotational velocities have made constrainingτCeti’s inclination difficult. For planet candidates from radial velocity (RV) observations, this leads to substantial uncertainties in the planetary masses, as only the minimum mass ( m sin i ) can be constrained with RV. In this paper, we used new long-baseline optical interferometric data from the CHARA Array with the MIRC-X beam combiner and extreme precision spectroscopic data from the Lowell Discovery Telescope with EXPRES to improve constraints on the stellar parameters ofτCeti. Additional archival data were obtained from a Tennessee State University Automatic Photometric Telescope and the Mount Wilson Observatory HK project. These new and archival data sets led to improved stellar parameter determinations, including a limb-darkened angular diameter of 2.019 ± 0.012 mas and rotation period of 46 ± 4 days. By combining parameters from our data sets, we obtained an estimate for the stellar inclination of 7° ± 7°. This nearly pole-on orientation has implications for the previously reported exoplanets. An analysis of the system dynamics suggests that the planetary architecture described by Feng et al. may not retain long-term stability for low orbital inclinations. Additionally, the inclination ofτCeti reveals a misalignment between the inclinations of the stellar rotation axis and the previously measured debris disk rotation axis (idisk= 35° ± 10°). 
    more » « less
  5. Abstract Recent cosmological hydrodynamical simulations have produced populations of numerical galaxies whose global star-forming properties are in good agreement with those of observed galaxies. Proper modeling of energetic feedback from supernovae and active galactic nuclei is critical to the ability of simulations to reproduce observed galaxy properties, and historically, such modeling has proven to be a challenge. Here, we analyze the local properties of central and satellite galaxies in thez= 0 snapshot of the TNG100 simulation as a test of feedback models. We generate a face-on projection of stellar particles in TNG100 galaxies, from which we demonstrate the existence of a resolved star-forming main sequence (ΣSFR–Σ*relation) with a slope and normalization that is in reasonable agreement with previous studies. We also present radial profiles of various galaxy populations for two parameters: the distance from the resolved main-sequence line (ΔΣSFR) and the luminosity-weighted stellar age (AgeL). We find that, on average, high-mass central and satellite galaxies quench from the inside out, while low-mass central and satellite galaxies have similar, flatter profiles. Overall, we find that, with the exception of the starburst population, the TNG100 feedback models yield simulated galaxies whose radial distributions of AgeLand ΔΣSFRagree with those of observed galaxies. 
    more » « less