skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 24, 2026

Title: Maximizing inference from distributed experimental networks via “add‐on” studies
Distributed experimental networks have emerged as a powerful approach in field ecology, enabling experimental replication across global gradients. These networks use standardized treatments at dispersed sites to identify factors like climate or soil that shape biotic responses. Reserving space for future “add‐on” work fosters discovery by transforming distributed networks into distributed experimental infrastructure. However, challenges include balancing feasibility, plot impacts, and demands on site scientists. Using the Disturbance and Recovery Across Grasslands Network (DRAGNet) as a case study informed by lessons learned in the Nutrient Network (NutNet), we outline effective practices for designing add‐on work to retain the original experiment’s integrity while effectively using the resources of the network participants. By following guidelines for hypothesis‐driven, inclusive research that engages contributors intellectually, minimizes plot impacts using field‐tested protocols, and maximizes scientific impact and inclusion, distributed networks can become valuable infrastructure for advancing ecological understanding.  more » « less
Award ID(s):
1831944 2425352
PAR ID:
10659478
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Frontiers in Ecology and the Environment
Volume:
23
Issue:
10
ISSN:
1540-9295
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Wireless infrastructure is steadily evolving into wireless access for all humans and most devices, from 5G to Internet-of-Things. This widespread access creates the expectation of custom and adaptive services from the personal network to the backbone network. In addition, challenges of scale and interoperability exist across networks, applications and services, requiring an effective wireless network management infrastructure. For this reason Software-Defined Networks (SDN) have become an attractive research area for wireless and mobile systems. SDN can respond to sporadic topology issues such as dropped packets, message latency, and/or conflicting resource management, to improved collaboration between mobile access points, reduced interference and increased security options. Until recently, the main focus on wireless SDN has been a more centralized approach, which has issues with scalability, fault tolerance, and security. In this work, we propose a state of the art WAM-SDN system for large-scale network management. We discuss requirements for large scale wireless distributed WAM-SDN and provide preliminary benchmarking and performance analysis based on our hybrid distributed and decentralized architecture. Keywords: software defined networks, controller optimization, resilience. 
    more » « less
  2. null (Ed.)
    Due to their ability to move without sliding relative to their environment, soft growing robots are attractive for deploying distributed sensor networks in confined spaces. Sensing of the state of such robots would add to their capabilities as human-safe, adaptable manipulators. However, incorporation of distributed sensors onto soft growing robots is challenging because it requires an interface between stiff and soft materials, and the sensor network needs to undergo significant strain. In this work, we present a method for adding sensors to soft growing robots that uses flexible printed circuit boards with self-contained units of microcontrollers and sensors encased in a laminate armor that protects them from unsafe curvatures. We demonstrate the ability of this system to relay directional temperature and humidity information in hard-to-access spaces. We also demonstrate and characterize a method for sensing the growing robot shape using inertial measurement units deployed along its length, and develop a mathematical model to predict its accuracy. This work advances the capabilities of soft growing robots, as well as the field of soft robot sensing. 
    more » « less
  3. Existing classical optical network infrastructure cannot be immediately used for quantum network applications due to photon loss. The first step toward enabling quantum networks is the integration of quantum repeaters into optical networks. However, the expenses and intrinsic noise inherent in quantum hardware underscore the need for an efficient deployment strategy that optimizes the placement of quantum repeaters and memories. In this article, we present a comprehensive framework for network planning, aiming to efficiently distribute quantum repeaters across existing infrastructure, with the objective of maximizing quantum network utility within an entanglement distribution network. We apply our framework to several cases including a preliminary illustration of a dumbbell network topology and real-world cases of the SURFnet and ESnet. We explore the effect of quantum memory multiplexing within quantum repeaters, as well as the influence of memory coherence time on quantum network utility. We further examine the effects of different fairness assumptions on network planning, uncovering their impacts on real-time network performance. 
    more » « less
  4. Rothblum, Guy N; Wee, Hoeteck (Ed.)
    The field of distributed certification is concerned with certifying properties of distributed networks, where the communication topology of the network is represented as an arbitrary graph; each node of the graph is a separate processor, with its own internal state. To certify that the network satisfies a given property, a prover assigns each node of the network a certificate, and the nodes then communicate with one another and decide whether to accept or reject. We require soundness and completeness: the property holds if and only if there exists an assignment of certificates to the nodes that causes all nodes to accept. Our goal is to minimize the length of the certificates, as well as the communication between the nodes of the network. Distributed certification has been extensively studied in the distributed computing community, but it has so far only been studied in the information-theoretic setting, where the prover and the network nodes are computationally unbounded. In this work we introduce and study computationally bounded distributed certification: we define locally verifiable distributed SNARGs (LVD-SNARGs), which are an analog of SNARGs for distributed networks, and are able to circumvent known hardness results for information-theoretic distributed certification by requiring both the prover and the verifier to be computationally efficient (namely, PPT algorithms). We give two LVD-SNARG constructions: the first allows us to succinctly certify any network property in P, using a global prover that can see the entire network; the second construction gives an efficient distributed prover, which succinctly certifies the execution of any efficient distributed algorithm. Our constructions rely on non-interactive batch arguments for NP (BARGs) and on RAM-SNARGs, which have recently been shown to be constructible from standard cryptographic assumptions. 
    more » « less
  5. Abstract Compound failures occur when urban flooding coincides with traffic congestion, and their impact on network connectivity is poorly understood. Firstly, either three-dimensional road networks or the traffic on the roads has been considered, but not both. Secondly, we lack network science frameworks to consider compound failures in infrastructure networks. Here we present a network-theory-based framework that bridges this gap by considering compound structural, functional, and topological failures. We analyze high-resolution traffic data using network percolation theory to study the response of the transportation network in Harris County, Texas, US to Hurricane Harvey in 2017. We find that 2.2% of flood-induced compound failure may lead to a reduction in the size of the largest cluster where network connectivity exists, the giant component, 17.7%. We conclude that indirect effects, such as changes in traffic patterns, must be accounted for when assessing the impacts of flooding on transportation network connectivity and functioning. 
    more » « less