skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 12, 2027

Title: Cross-site comparison of ecosystem nutrient cycling in hardwood and conifer forests on contrasting soils
In the northeastern United States, both hardwood and conifer forests have developed on sites with contrasting soils, allowing an examination of the effect of site and forest type on ecosystem nutrient cycling. We measured biomass production and nutrient fluxes in northern hardwood and conifer stands at three sites differing in soil fertility. We found that leaf, root, and wood concentrations of calcium (Ca), magnesium (Mg), and potassium reflected differences in soil base cation availability, while concentrations of nitrogen (N) and phosphorus (P) were more consistent across sites. Nutrient uptake was calculated as the sum of litterfall, net throughfall (throughfall minus precipitation), root turnover, and accumulation in perennial tissues (wood). We propose a novel metric of nutrient cycling, the nutrient retention fraction (NRF), defined as the proportion of annual nutrient uptake retained in biomass accretion. Because the NRF is unitless, it can be compared across nutrients; Ca and Mg had the highest NRF and P the lowest ( p = 0.05). Across sites and elements, NRFs were lower for conifers (5.0 ± 0.6%) than for hardwoods (7.2 ± 0.5%), associated with their lower productivity. Nutrient-use efficiency (biomass production divided by nutrient uptake) tended to be high where foliar concentrations indicated low availability of that nutrient. Nutrient retention of N and P was higher where availability of the other element was high, which could be a mechanism contributing to N and P co-limitation.  more » « less
Award ID(s):
2224545
PAR ID:
10659594
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Canadian Science Publishing
Date Published:
Journal Name:
Canadian Journal of Forest Research
Volume:
56
ISSN:
0045-5067
Page Range / eLocation ID:
1 to 17
Format(s):
Medium: X
Associated Dataset(s):
View Associated Dataset(s) >>
Sponsoring Org:
National Science Foundation
More Like this
  1. This dataset provides comprehensive measurements of nutrient concentrations and fluxes in foliage, fine roots, wood, litterfall, and throughfall in hardwood and conifer stands across temperate forest stands at three long-term ecological research sites in the northeastern United States: Cone Pond, NH, Hubbard Brook, NH, and Sleepers River, VT. These sites vary in bedrock composition, parent material, and soil chemistry, but share similar climatic characteristics. Tissue nutrient concentrations were determined in leaves, fine roots, wood, and branches using site- and tissue-specific methods, with additional quality control through certified standards and duplicate sampling. Nutrient fluxes via litterfall and throughfall were measured over multiple years. Nutrient fluxes in roots were estimated from minirhizotron-based turnover rates and fine root biomass. Annual nutrient accumulation and uptake were calculated by integrating biomass production and nutrient concentrations. This dataset supports cross-site comparisons of forest biogeochemistry and provides a basis for evaluating nutrient limitations, cycling processes, and ecosystem responses to environmental gradients in northeastern temperate forests. 
    more » « less
  2. The MELNHE study looks at patterns of resource limitation through nutrient manipulations in three study sites in New Hampshire: Bartlett Experimental Forest, Hubbard Brook Experimental Forest, and Jeffers Brook, located in the White Mountain National Forest. The investigation is monitoring stem diameter, leaf area, sap flow, foliar chemistry, leaf litter production and chemistry, foliar nutrient resorption, root biomass and production, mycorrhizal associations, soil respiration, heterotrophic respiration, N and P availability, N mineralization, soil phosphatase activity, soil carbon and nitrogen, nutrient uptake capacity of roots, and mineral weathering. Applications of N and P began in June 2011 and continue at the rate of 30 kg N/ha/yr (as NH4NO3) and 10 kg P/ha/yr (as NaH2PO4). This dataset was produced using thermal dissipation probes in hardwood trees. We recorded temperature differences between the reference and heated over multiple days in five hardwood species across 5 years. Sites are located in Bartlett Experimental Forest and Hubbard Brook Experimental Forest in NH. The number of trees in each plot and species vary among years. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  3. The MELNHE study looks at patterns of resource limitation through nutrient manipulations in three study sites in New Hampshire: Bartlett Experimental Forest, Hubbard Brook Experimental Forest, and Jeffers Brook, located in the White Mountain National Forest. The investigation is monitoring stem diameter, leaf area, sap flow, foliar chemistry, leaf litter production and chemistry, foliar nutrient resorption, root biomass and production, mycorrhizal associations, soil respiration, heterotrophic respiration, N and P availability, N mineralization, soil phosphatase activity, soil carbon and nitrogen, nutrient uptake capacity of roots, and mineral weathering. This data set includes phosphate, nitrate and ammonium availability measured using resin exchange strips. Additional detail on the MELNHE project, including a datatable of site descriptions and a pdf file with the project description and diagram of plot configuration can be found in this data package: https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-hbr&identifier=344 These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. The following papers describe and make use of these data: Fisk MC, Ratliff TJ, Goswami S, Yanai RD. 2014. Synergistic soil response to nitrogen plus phosphorus fertilization in hardwood forests. Biogeochemistry 118:195-204. https://doi.org/10.1007/s10533-013-9918-1 Goswami S, Fisk MC, Vadeboncoeur MA, Johnston M, Yanai RD, and Fahey TJ. 2018. Phosphorus limitation of aboveground production in northern hardwood forests. Ecology 99: 438-449. https://doi.org/10.1002/ecy.2100 Shan S, Fisk MC, Fahey TJ. 2018. Contrasting effects of N on rhizosphere processes in two northern hardwood species. Soil Biology and Biochemistry 126: 219-227. https://doi.org/10.1016/j.soilbio.2018.09.007 Shan S, Devens H, Fahey TJ, Yanai RD, Fisk MC. 2022. Fine root growth increases in response to nitrogen addition in phosphorus-limited northern hardwood forests. Ecosystems, https://doi.org/10.1007/s10021-021-00735-4 Gonzales KE, Yanai RD, Fahey TJ, Fisk MC. 2023. Evidence for P limitation in eight northern hardwood stands: Foliar concentrations and resorption by three tree species in a factorial N by P addition experiment. Forest Ecology and Management 529: 120696. https://doi.org/10.1016/j.foreco.2022.120696 Li S, Fisk MC, Yanai RD, Fahey TJ. 2023. Co-limitation of root growth by nitrogen and phosphorus in early successional northern hardwood forest. Ecosystems. https://10.1007/s10021-023-00869-7 
    more » « less
  4. Vegetation processes are fundamentally limited by nutrient and water availability, the uptake of which is mediated by plant roots in terrestrial ecosystems. While tropical forests play a central role in global water, carbon, and nutrient cycling, we know very little about tradeoffs and synergies in root traits that respond to resource scarcity. Tropical trees face a unique set of resource limitations, with rock-derived nutrients and moisture seasonality governing many ecosystem functions, and nutrient versus water availability often separated spatially and temporally. Root traits that characterize biomass, depth distributions, production and phenology, morphology, physiology, chemistry, and symbiotic relationships can be predictive of plants’ capacities to access and acquire nutrients and water, with links to aboveground processes like transpiration, wood productivity, and leaf phenology. In this review, we identify an emerging trend in the literature that tropical fine root biomass and production in surface soils are greatest in infertile or sufficiently moist soils. We also identify interesting paradoxes in tropical forest root responses to changing resources that merit further exploration. For example, specific root length, which typically increases under resource scarcity to expand the volume of soil explored, instead can increase with greater base cation availability, both across natural tropical forest gradients and in fertilization experiments. Also, nutrient additions, rather than reducing mycorrhizal colonization of fine roots as might be expected, increased colonization rates under scenarios of water scarcity in some forests. Efforts to include fine root traits and functions in vegetation models have grown more sophisticated over time, yet there is a disconnect between the emphasis in models characterizing nutrient and water uptake rates and carbon costs versus the emphasis in field experiments on measuring root biomass, production, and morphology in response to changes in resource availability. Closer integration of field and modeling efforts could connect mechanistic investigation of fine-root dynamics to ecosystem-scale understanding of nutrient and water cycling, allowing us to better predict tropical forest-climate feedbacks. 
    more » « less
  5. Resource allocation theory posits that increased soil nutrient availability results in decreased plant investment in nutrient acquisition. We evaluated this theory by quantifying fine root biomass and growth in a long term, nitrogen (N) 9 phosphorus (P) fertilization study in three mature northern hardwood forest stands where aboveground growth increased primarily in response to P addition. We did not detect a decline in fine root bio- mass or growth in response to either N or P. Instead, fine root growth increased in response to N, by 40% for length (P = 0.04 for the main effect of N in ANOVA), and by 36% for mass, relative to controls. Fine root mass growth was lower in response to N + P addition than predicted from the main effects of N and P (P = 0.01 for the interaction of N 9 P). The response of root growth to N availability did not result in detectable responses in fine root biomass (P = 0.61), which is consistent with increased root turnover with N addition. We propose that the differential growth response to fertilization between above- and belowground components is a mechanism by which trees enhance P acquisition in response to increasing N availability, illustrating how both elements may co- limit northern hardwood forest production. 
    more » « less