Abstract Increasing the albedo of urban surfaces, through strategies like white roof installations, has emerged as a promising approach for urban climate adaptation. Yet, modeling these strategies on a large scale is limited by the use of static urban surface albedo representations in the Earth system models. In this study, we developed a new transient urban surface albedo scheme in the Community Earth System Model and evaluated evolving adaptation strategies under varying urban surface albedo configurations. Our simulations model a gradual increase in the urban surface albedo of roofs, impervious roads, and walls from 2015 to 2099 under the SSP3‐7.0 scenario. Results highlight the cooling effects of roof albedo modifications, which reduce the annual‐mean canopy urban heat island intensity from 0.8°C in 2015 to 0.2°C by 2099. Compared to high‐density and medium‐density urban areas, higher albedo configurations are more effective in cooling environments within tall building districts. Additionally, urban surface albedo changes lead to changes in building energy consumption, where high albedo results in more indoor heating usage in urban areas located beyond 30°N and 25°S. This scheme offers potential applications like simulating natural albedo variations across urban surfaces and enables the inclusion of other urban parameters, such as surface emissivity.
more »
« less
This content will become publicly available on November 1, 2026
Enhancing Global‐Scale Urban Land Cover Representation Using Local Climate Zones in the Community Earth System Model
Abstract Urban areas are increasingly vulnerable to the impacts of climate change, necessitating accurate simulations of urban climates in Earth system models (ESMs) in support of large‐scale urban climate adaptation efforts. ESMs underrepresent urban areas due to their small spatial extent and the lack of detailed urban landscape data. To enhance the accuracy of urban representation, this study integrated the local climate zones (LCZs) scheme within the Community Earth System Model (CESM) to better represent urban heterogeneity. We adopted a modular approach to incorporate the 10 built LCZ classes into CESM as a new option in addition to the default urban three‐class scheme (i.e., tall building district, high density, and medium density). CESM simulations using the LCZ‐based urban characteristics were validated globally at 20 flux tower sites, showing site‐averaged improvement in modeling upward longwave radiation () and anthropogenic heat flux (), but increased uncertainties in modeling sensible heat flux (). The root‐mean‐square error between the observed and simulated using the LCZ decreased by 4% compared to using the default. Model sensitivity experiments revealed that and had comparable sensitivity to LCZ urban morphological and thermal parameter subsets. This study assessed and demonstrated the implementation as the starting point for future work on better resolving urban areas in Earth system modeling.
more »
« less
- Award ID(s):
- 2145362
- PAR ID:
- 10659671
- Publisher / Repository:
- AGU
- Date Published:
- Journal Name:
- Journal of Advances in Modeling Earth Systems
- Volume:
- 17
- Issue:
- 11
- ISSN:
- 1942-2466
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Desert dust is an important atmospheric aerosol that affects the Earth's climate, biogeochemistry, and air quality. However, current Earth system models (ESMs) struggle to accurately capture the impact of dust on the Earth's climate and ecosystems, in part because these models lack several essential aeolian processes that couple dust with climate and land surface processes. In this study, we address this issue by implementing several new parameterizations of aeolian processes detailed in our companion paper in the Community Earth System Model version 2 (CESM2). These processes include (1) incorporating a simplified soil particle size representation to calculate the dust emission threshold friction velocity, (2) accounting for the drag partition effect of rocks and vegetation in reducing wind stress on erodible soils, (3) accounting for the intermittency of dust emissions due to unresolved turbulent wind fluctuations, and (4) correcting the spatial variability of simulated dust emissions from native to higher spatial resolutions on spatiotemporal dust variability. Our results show that the modified dust emission scheme significantly reduces the model bias against observations compared with the default scheme and improves the correlation against observations of multiple key dust variables such as dust aerosol optical depth (DAOD), surface particulate matter (PM) concentration, and deposition flux. Our scheme's dust also correlates strongly with various meteorological and land surface variables, implying higher sensitivity of dust to future climate change than other schemes' dust. These findings highlight the importance of including additional aeolian processes for improving the performance of ESM aerosol simulations and potentially enhancing model assessments of how dust impacts climate and ecosystem changes.more » « less
-
Abstract. High-resolution urban climate modeling has faced substantial challenges due to the absence of a globally consistent, spatially continuous, and accurate dataset to represent the spatial heterogeneity of urban surfaces and their biophysical properties. This deficiency has long obstructed the development of urban-resolving Earth system models (ESMs) and ultra-high-resolution urban climate modeling, over large domains. Here, we present U-Surf, a first-of-its-kind 1 km resolution present-day (circa 2020) global continuous urban surface parameter dataset. Using the urban canopy model (UCM) in the Community Earth System Model as a base model for satisfying dataset requirements, U-Surf leverages the latest advances in remote sensing, machine learning, and cloud computing to provide the most relevant urban surface biophysical parameters, including radiative, morphological, and thermal properties, for UCMs at the facet and canopy level. Generated using a systematically unified workflow, U-Surf ensures internal consistency among key parameters, making it the first globally coherent urban canopy surface dataset. U-Surf significantly improves the representation of the urban land heterogeneity both within and across cities globally; provides essential, high-fidelity surface biophysical constraints to urban-resolving ESMs; enables detailed city-to-city comparisons across the globe; and supports next-generation kilometer-resolution Earth system modeling across scales. U-Surf parameters can be easily converted or adapted to various types of UCMs, such as those embedded in weather and regional climate models, as well as air quality models. The fundamental urban surface constraints provided by U-Surf can also be used as features for machine learning models and can have other broad-scale applications for socioeconomic, public health, and urban planning contexts. We expect U-Surf to advance the research frontier of urban system science, climate-sensitive urban design, and coupled human–Earth systems in the future. The dataset is publicly available at https://doi.org/10.5281/zenodo.11247598 (Cheng et al., 2024).more » « less
-
Surface ocean phosphate is commonly below the standard analytical detection limits, leading to an incomplete picture of the global variation and biogeochemical role of phosphate. A global compilation of phosphate measured using high-sensitivity methods revealed several previously unrecognized low-phosphate areas and clear regional differences. Both observational climatologies and Earth system models (ESMs) systematically overestimated surface phosphate. Furthermore, ESMs misrepresented the relationships between phosphate, phytoplankton biomass, and primary productivity. Atmospheric iron input and nitrogen fixation are known important controls on surface phosphate, but model simulations showed that differences in the iron-to-macronutrient ratio in the vertical nutrient supply and surface lateral transport are additional drivers of phosphate concentrations. Our study demonstrates the importance of accurately quantifying nutrients for understanding the regulation of ocean ecosystems and biogeochemistry now and under future climate conditions.more » « less
-
Abstract Ocean warming is a key factor impacting future changes in climate. Here we investigate vertical structure changes in globally averaged ocean heat content (OHC) in high‐ (HR) and low‐resolution (LR) future climate simulations with the Community Earth System Model (CESM). Compared with observation‐based estimates, the simulated OHC anomalies in the upper 700 and 2,000 m during 1960–2020 are more realistic in CESM‐HR than ‐LR. Under RCP8.5 scenario, the net surface heat into the ocean is very similar in CESM‐HR and ‐LR. However, CESM‐HR has a larger increase in OHC in the upper 250 m compared to CESM‐LR, but a smaller increase below 250 m. This difference can be traced to differences in eddy‐induced vertical heat transport between CESM‐HR and ‐LR in the historical period. Moreover, our results suggest that with the same heat input, upper‐ocean warming is likely to be underestimated by most non‐eddy‐resolving climate models.more » « less
An official website of the United States government
