An approach is described for spectrally parallel hyperspectral mid-infrared imaging with spatial resolution dictated by fluorescence imaging. Quantum cascade laser (QCL)-based dual-comb mid-infrared spectroscopy enables the acquisition of infrared spectra at high speed (<1 millisecond) through the generation of optical beat patterns and radio-frequency detection. The high-speed nature of the spectral acquisition is shown to support spectral mapping in microscopy measurements. Direct detection of the transmitted infrared beam yields high signal-to-noise spectral information, but long infrared wavelengths impose low diffraction-limited spatial resolution. The use of fluorescence detected photothermal infrared (F-PTIR) imaging provides high spatial resolution tied directly to the integrated IR absorption. Computational imaging using a multi-agent consensus equilibrium (MACE) approach combines the high spatial resolution of F-PTIR and the high spectral information of dual-comb infrared transmission in a single optimized equilibrium hyperspectral data cube.
more »
« less
This content will become publicly available on August 1, 2026
Application of optical photothermal infrared spectroscopy (O-PTIR) for future returned Mars samples
Optical photothermal infrared spectroscopy (O-PTIR) was used to characterize a terrestrial rock sample as a demonstration of the technique’s enhanced spatial resolution as it corresponds to minerology and the detection of organics. Traditional reflectance-based infrared techniques are limited by the wavelength of the infrared light interacting with the surface along with additional optical dispersion issues. However, because of the nature in which the infrared spectrum is measured via O-PTIR, these traditional issues are eliminated. This is possible through the recent developments of high intensity quantum cascade-based infrared lasers capable of scanning the mid infrared spectrum (3000–500 cm−1). Individual O-PTIR and diffuse reflectance data were collected on a terrestrial rock sample and compared to a recent discovery of NASA JPL’s Perseverance Rover regarding inclusions of comparable size. In addition, an O-PTIR map of a particularly dense area of proteinaceous material in the terrestrial sample was collected, further exemplifying the capability. This technique has significant potential for use regarding future returned Mars samples and in situ planetary surface science when considering the spatial resolution, sensitivity, and negligible sample preparation.
more »
« less
- Award ID(s):
- 2148727
- PAR ID:
- 10659903
- Publisher / Repository:
- AIP
- Date Published:
- Journal Name:
- Review of Scientific Instruments
- Volume:
- 96
- Issue:
- 8
- ISSN:
- 0034-6748
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Automobile paint chips are a crucial piece of trace evidence for forensic investigators. This is because automotive paints are composed of multiple layers, including the primer, basecoat, and clearcoat, each of which has its own chemical composition that can vary by vehicle make, model, year, and manufacturing plant. Thus, Fourier‐transform infrared (FTIR) spectral databases for automobile paint systems have been established to aid law enforcement in, for example, narrowing search parameters for a suspect's vehicle. Recently, car manufacturers have implemented primers on plastic substrates that are much thinner (~5 μm) than those on metal substrates, making it more difficult to manually separate for analyses. Here, we evaluated FTIR microspectroscopy (μ‐FTIR) and optical photothermal infrared spectroscopy (O‐PTIR) to chemically image cross sections of paint chips without manually separating the layers. For μ‐FTIR, transmission and transflection modes provided the highest quality spectra compared to reflection and μ‐ATR analyses. Point analysis was preferable to chemical imaging, as peaks were identified in the point (MCT) detector's lower spectral range that was below the imaging (FPA) detector's cutoff, such as those associated with titanium dioxide. Reduced spectral range can lead to a similar issue in O‐PTIR analyses depending on instrument configuration. However, its complementary Raman spectra showed strong titanium dioxide peaks, providing an alternate means of identification. Both techniques are likely to become more relevant as they are non‐destructive and avoid manual separation of the layers. O‐PTIR is particularly well‐suited for analysis of the thin primer layer due to its superior spatial resolution.more » « less
-
Immortalized cell lines are commonly used for in vitro studies such as drug efficacy, toxicology, and life-cycle due to their cost effectiveness and accessibility; however, subpopulations within a cell line can arise from random mutations or asynchronous cell cycles which may lead to results that make interpretation difficult. A method that could classify these differences and separate unique subpopulations would increase understanding of heterogeneous cellular responses. In the present work, we explore spectroscopic signals associated with subpopulations of cells magnetically sorted on the basis of α5β1 integrin binding to cyclic-RGDfC which mimics fibronectin in the extracellular matrix. SW620 colon cancer cells were incubated with cyclic-RGDfC functionalized gold-coated, iron core nanoparticles and magnetically sorted. The subpopulations from the sort were imaged (N=10 positive and N=10 negative, number of cells) via simultaneous surface-enhanced Raman scattering (SERS) and optical-photothermal infrared spectroscopy (O-PTIR). Pearson correlations of the standard peptide-protein interaction in the SERS channel allowed for visualization of the cyclic RGDfC – integrin α5β1 interaction. Partial least squares discriminant analysis of the O-PTIR spectra collected from cell maps successfully classified the positively or negatively sorted cells. These results demonstrate that biochemical changes within a single cell line can be sorted via an integrin activity-based assay using simultaneous SERS and O-PTIR.more » « less
-
Abstract The anisotropy of hexagonal boron nitride (hBN) gives rise to hyperbolic phonon-polaritons (HPhPs), notable for their volumetric frequency-dependent propagation and strong confinement. For frustum (truncated nanocone) structures, theory predicts five, high-order HPhPs, sets, but only one set was observed previously with far-field reflectance and scattering-type scanning near-field optical microscopy. In contrast, the photothermal induced resonance (PTIR) technique has recently permitted sampling of the full HPhP dispersion and observing such elusive predicted modes; however, the mechanism underlying PTIR sensitivity to these weakly-scattering modes, while critical to their understanding, has not yet been clarified. Here, by comparing conventional contact- and newly developed tapping-mode PTIR, we show that the PTIR sensitivity to those weakly-scattering, high-Q (up to ≈280) modes is, contrary to a previous hypothesis, unrelated to the probe operation (contact or tapping) and is instead linked to PTIR ability to detect tip-launched dark, volumetrically-confined polaritons, rather than nanostructure-launched HPhPs modes observed by other techniques. Furthermore, we show that in contrast with plasmons and surface phonon-polaritons, whose Q -factors and optical cross-sections are typically degraded by the proximity of other nanostructures, the high- Q HPhP resonances are preserved even in high-density hBN frustum arrays, which is useful in sensing and quantum emission applications.more » « less
-
This perspective highlights recent advances in super-resolution, mid-infrared imaging and spectroscopy. It provides an overview of the different near field microscopy techniques developed to address the problem of chemically imaging specimens in the mid-infrared “fingerprint” region of the spectrum with high spatial resolution. We focus on a recently developed far-field optical technique, called infrared photothermal heterodyne imaging (IR-PHI), and discusses the technique in detail. Its practical implementation in terms of equipment used, optical geometries employed, and underlying contrast mechanism are described. Milestones where IR-PHI has led to notable advances in bioscience and materials science are summarized. The perspective concludes with a future outlook for robust and readily accessible high spatial resolution, mid-infrared imaging and spectroscopy techniques.more » « less
An official website of the United States government
