skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 2, 2026

Title: Fe2+/Fe3+ Intervalence Charge Transfer and Enhanced d - d Absorption in Mixed Valence Iron Minerals at Elevated Temperatures
Abstract The absorption of light by Fe/Ti and Fe/Fe intervalence charge transfer (IVCT) bands has previously been found in aluminum oxide and Al2SiO5 aluminosilicate minerals to decrease markedly at elevated temperatures. Given the abundance of iron at depth in the Earth, assessing the generality with which and extent to which IVCT mineral phases become more optically transparent at temperature than they are under ambient conditions has potentially significant implications for the modeling of mantle geophysical processes such as radiative conductivity. A broad experimental survey of the optical absorption spectra at elevated temperatures of various mixed valence iron minerals has been conducted. The minerals considered here are cordierite, chloritoid, lazulite, dumortierite, jeremejevite, beryl, osumilite, biotite (mica), pargasite (amphibole) and aegirine (pyroxene). All samples transiently lose significant Fe/Fe IVCT feature intensity at temperature. In beryl, osumilite, biotite, pargasite and aegirine, spin-allowed Fe2+d-d features also decrease in integral intensity at temperature; in all but beryl, the intensity loss is significant. This trend is consistent with d-d band enhancement via Fe2+/Fe3+ exchange coupling, which has not previously been identified in the majority of these minerals. It is contrasted against the behavior of ordinary spinallowed Fe2+d-d bands in non-IVCT minerals forsterite (olivine) and elbaite (tourmaline). The depletion of Fe/Fe IVCT and enhanced Fe2+d-d band intensity at elevated temperatures may both be important mechanisms by which iron-bearing mineral phases become more optically transparent under conditions at depth.  more » « less
Award ID(s):
2148727
PAR ID:
10659904
Author(s) / Creator(s):
;
Editor(s):
Tomascak, P; Nestola, F
Publisher / Repository:
American Mineralogist
Date Published:
Journal Name:
American Mineralogist
ISSN:
0003-004X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Single-crystal optical spectra of corundum (Al2O3) and the Al2SiO5 polymorphs andalusite, kyanite, and sillimanite, containing both Fe2+-Fe3+ and Fe2+-Ti4+ intervalence charge transfer (IVCT) absorption bands were measured at temperatures up to 1000 °C. Upon heating, thermally equilibrated IVCT bands significantly decreased in intensity and recovered fully on cooling. These trends contrast with the behavior of crystal field bands at temperature for Fe, Cr, and V in corundum, kyanite, and spinel. The effects of cation diffusion and aggregation, as well as the redistribution of band intensity at temperature, are also discussed. The loss of absorption intensity in the visible and near-infrared regions of the spectrum of these phases may point to a more general behavior of IVCT in minerals at temperatures within the Earth with implications for radiative conductivity within the Earth. 
    more » « less
  2. Tomascak, P; Nestola, F (Ed.)
    Abstract Iron-titanium (Fe-Ti) charge transfer is mentioned in numerous articles as the source of the coloration of many natural minerals and some man-made materials, but no global review of this phenomenon has been provided so far. Iron and titanium are ubiquitous in nature and are often found in the same material as Fe2+ and Fe3+, and Ti4+ (more rarely Ti3+). When Fe and Ti ions are in close geometric proximity in an oxide or (alumino)silicate structure, charge transfer can occur between the two ions, even though their concentration might be below 100 ppm. This results in a variety of absorption features that contributes to the color of minerals. Adebate remains on the exact nature of Fe/Ti electronic transition, i.e. Fe2+ + Ti4+ → Fe3+ + Ti3+ or the reverse, but solving this issue is not within the scope of the present work. Ascertaining a metal-metal charge transfer is often not straightforward. This review compiles existing knowledge on Fe-Ti charge transfer in both crystalline and amorphous materials and identifies several key characteristics in more than 40 different materials. A charge transfer is associated with broad, intense, optical absorption bands that decrease in intensity at elevated temperatures. It is also strongly pleochroic in non-isotropic materials. Until now, Fe-Ti charge transfer transitions have been primarily described in the 2.25 to 3.1 eV range, corresponding to yellow to orange to brown colors, with notable exceptions such as blue sapphire or kyanite, and green andalusite. This review suggests that Fe-Ti charge transfer can occur across the entire visible spectrum, and the position of the absorption band correlates with the Fe-Ti nteratomic distance. This correlation highlights the presence of multiple crystallographic sites for both Fe and Ti in many oxides, leading to multiple Fe-Ti bands within these materials (e.g. sapphire, ilmenite, pseudobrookite). Finally, the use of metal-metal distances is suggested to differentiate this heteronuclear Fe-Ti charge transfer from the common homonuclear charge transfer Fe2+-Fe3+. 
    more » « less
  3. Titanium and Fe isotopic compositions of lavas from a calc-alkaline differentiation suite and corresponding mineral separates from the Rindjani Volcano, Indonesia show that Fe and Ti isotopic fractionations between minerals and melts are lower than those recorded in other suites at all stages of differentiation. The limited isotopic fractionation for Ti is likely due to low-Ti magnetite and clinopyroxene being the dominant carriers of Ti in Rindjani lavas, as these minerals are thought to have limited equilibrium Ti isotopic fractionation relative to silicate magmas. Other magmatic differentiation suites controlled by removal of Ti-rich magnetite and characterized by a lesser role of clinopyroxene have larger Ti isotopic fractionations. This effect is an indirect consequence of the elevated Fe3+/Fe2+ ratio of calc-alkaline magmas such as Rindjani, which promotes Fe3+ incorporation into magnetite at the expense of Fe2+-Ti4+ pairs, such that increased oxygen fugacity will subdue Ti isotopic fractionation in global magmatic series. Similarly, we find negligible Fe isotopic fractionation in Rindjani bulk rocks and mineral separates, unlike previous studies. This is also likely due to the oxidized nature of the Rindjani differentiation suite, which leads to similar Fe3+/Fe2+ ratios in melt and minerals and decreases overall mineral-melt Fe fractionation factors. Paired Ti and Fe isotopic analyses may therefore represent a powerful tool to assess oxygen fugacity during differentiation, independent from Fe 3+ determinations of erupted samples. 
    more » « less
  4. The suevite (polymict melt rock-bearing breccia) composing the upper peak ring of the Chicxulub impact crater is extremely heterogeneous, containing a combination of relict clasts and secondary minerals. Using scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM/EDS) and electron probe microanalysis (EPMA), we investigated the nature and occurrence of primary and secondary Fe-oxide and Fe-sulfide minerals to better understand hydrothermal trends such as mineral precipitation and dissolution, and to document the remobilization of Fe and associated siderophile elements within suevites. Large primary Fe-oxides (~20–100 µm) reveal decomposition and dissolution patterns, forming sub-micrometer to micrometer Fe-oxide phases. Secondary sub-micrometer Fe-oxide crystals are also visibly concentrated within clay. The occurrence of Fe-oxide crystals within clay suggests that these likely formed at temperatures ≤100 °C, near the formation temperature of smectite. The formation of Fe-oxide minerals on clay surfaces is of interest as it may form a micro-setting, where free electrons (from the oxidation of Fe2+) and the adsorption of simple organic molecules on the surface of clay could generate reactive conditions favorable to microbial communities. Primary and secondary Fe-sulfide minerals exhibiting a variety of morphologies are present within samples, representing different formation mechanisms. Secondary Fe-sulfide minerals occur within rims of clasts and vesicles and in fractures and voids. Some secondary Fe-sulfide grains are associated with Ni- and Co-rich phases, potentially reflecting the post-impact migration of siderophile elements within the suevite of the Chicxulub crater. 
    more » « less
  5. Abstract. The hydrous Ca–Al silicates lawsonite and epidote group minerals (EGMs) are key phases in subduction-zone H2O and element cycling. In high-pressure–low-temperature metamorphic rocks, Fe in both minerals is typically assumed to be entirely Fe3+, which substitutes for Al in octahedral sites as a major component in most EGMs and as a minor component in lawsonite and zoisite. New Fe micro-X-ray absorption near-edge spectroscopy (μ-XANES) analyses show substantial Fe2+ in lawsonite in blueschist from New Caledonia and zoisite from an unknown locality. Analysed Fe-rich EGMs (epidote, clinozoisite) contain primarily Fe3+. Lawsonite and some EGMs in subducted oceanic crust may contain more Fe2+ than is currently known, with possible implications for understanding subduction redox processes and conditions and why they vary in different subduction zones. 
    more » « less