skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 5, 2026

Title: Generalization Error Analysis for Selective State-Space Models Through the Lens of Attention
State-space models (SSMs) have recently emerged as a compelling alternative to Transformers for sequence modeling tasks. This paper presents a theoretical generalization analysis of selective SSMs, the core architectural component behind the Mamba model. We derive a novel covering number-based generalization bound for selective SSMs, building upon recent theoretical advances in the analysis of Transformer models. Using this result, we analyze how the spectral abscissa of the continuous-time state matrix influences the model’s stability during training and its ability to generalize across sequence lengths. We empirically validate our findings on a synthetic majority task, the IMDb sentiment classification benchmark, and the ListOps task, demonstrating how our theoretical insights translate into practical model behavior.  more » « less
Award ID(s):
2038493 2208182
PAR ID:
10659914
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ArXiv; Openreview
Date Published:
Format(s):
Medium: X
Location:
San Diego, CA
Sponsoring Org:
National Science Foundation
More Like this
  1. State-space models (SSMs) have emerged as a potential alternative architecture for building large language models (LLMs) compared to the previously ubiquitous transformer architecture. One theoretical weakness of transformers is that they cannot express certain kinds of sequential computation and state tracking (Merrill & Sabharwal, 2023), which SSMs are explicitly designed to address via their close architectural similarity to recurrent neural networks (RNNs). But do SSMs truly have an advantage (over transformers) in expressive power for state tracking? Surprisingly, the answer is no. Our analysis reveals that the expressive power of SSMs is limited very similarly to transformers: SSMs cannot express computation outside the complexity class 𝖳𝖢0. In particular, this means they cannot solve simple state-tracking problems like permutation composition. It follows that SSMs are provably unable to accurately track chess moves with certain notation, evaluate code, or track entities in a long narrative. To supplement our formal analysis, we report experiments showing that Mamba-style SSMs indeed struggle with state tracking. Thus, despite its recurrent formulation, the "state" in an SSM is an illusion: SSMs have similar expressiveness limitations to non-recurrent models like transformers, which may fundamentally limit their ability to solve real-world state-tracking problems. 
    more » « less
  2. State-space models (SSMs), such as Mamba (Gu & Dao, 2023), have been proposed as alternatives to Transformer networks in language modeling, incorporating gating, convolutions, and input-dependent token selection to mitigate the quadratic cost of multi-head attention. Although SSMs exhibit competitive performance, their in-context learning (ICL) capabilities, a remarkable emergent property of modern language models that enables task execution without parameter optimization, remain less explored compared to Transformers. In this study, we evaluate the ICL performance of SSMs, focusing on Mamba, against Transformer models across various tasks. Our results show that SSMs perform comparably to Transformers in standard regression ICL tasks, while outperforming them in tasks like sparse parity learning. However, SSMs fall short in tasks involving non-standard retrieval functionality. To address these limitations, we introduce a hybrid model, MambaFormer, that combines Mamba with attention blocks, surpassing individual models in tasks where they struggle independently. Our findings suggest that hybrid architectures offer promising avenues for enhancing ICL in language models. 
    more » « less
  3. Transformer models have been widely investigated in different domains by providing long-range dependency handling and global contextual awareness, driving the development of popular AI applications such as ChatGPT, Gemini, and Alexa. State Space Models (SSMs) have emerged as strong contenders in the field of sequential modeling, challenging the dominance of Transformers. SSMs incorporate a selective mechanism that allows for dynamic parameter adjustment based on input data, enhancing their performance. However, this mechanism also comes with increasing computational complexity and bandwidth demands, posing challenges for deployment on resource-constraint mobile devices. To address these challenges without sacrificing the accuracy of the selective mechanism, we propose a sparse learning framework that integrates architecture-aware compiler optimizations. We introduce an end-to-end solution–C 4 n kernel sparsity, which prunes n elements from every four contiguous weights, and develop a compiler-based acceleration solution to ensure execution efficiency for this sparsity on mobile devices. Based on the kernel sparsity, our framework generates optimized sparse models targeting specific sparsity or latency requirements for various model sizes. We further leverage pruned weights to compensate for the remaining weights, enhancing downstream task performance. For practical hardware acceleration, we propose C 4 n -specific optimizations combined with a layout transformation elimination strategy. This approach mitigates inefficiencies arising from fine-grained pruning in linear layers and improves performance across other operations. Experimental results demonstrate that our method achieves superior task performance compared to other semi-structured pruning methods and achieves up-to 7→ speedup compared to llama.cpp framework on mobile devices. 
    more » « less
  4. The demand for machine intelligence capable of processing continuous, long-context inputs on local devices is growing rapidly. However, the quadratic complexity and memory requirements of traditional Transformer architectures make them inefficient and often unusable for these tasks. This has spurred a paradigm shift towards new architectures like State Space Models (SSMs) and hybrids, which promise near-linear scaling. While most current research focuses on the accuracy and theoretical throughput of these models, a systematic performance characterization on practical consumer hardware is critically needed to guide system-level optimization and unlock new applications. To address this gap, we present a comprehensive, comparative benchmarking of carefully selected Transformer, SSM, and hybrid models specifically for long-context inference on consumer and embedded GPUs. Our analysis reveals that SSMs are not only viable but superior for this domain, capable of processing sequences up to 220K tokens on a 24GB consumer GPU-approximately 4x longer than comparable Transformers. While Transformers may be up to 1.8x faster at short sequences, SSMs demonstrate a dramatic performance inversion, becoming up to 4x faster at very long contexts (~57K tokens). Our operator-level analysis reveals that custom, hardware-aware SSM kernels dominate the inference runtime, accounting for over 55% of latency on edge platforms, identifying them as a primary target for future hardware acceleration. We also provide detailed, device-specific characterization results to guide system co-design for the edge. 
    more » « less
  5. Large language models have the ability to generate text that mimics patterns in their inputs. We introduce a simple Markov Chain sequence modeling task in order to study how this in-context learning (ICL) capability emerges. In our setting, each example is sampled from a Markov chain drawn from a prior distribution over Markov chains. Transformers trained on this task form \emph{statistical induction heads} which compute accurate next-token probabilities given the bigram statistics of the context. During the course of training, models pass through multiple phases: after an initial stage in which predictions are uniform, they learn to sub-optimally predict using in-context single-token statistics (unigrams); then, there is a rapid phase transition to the correct in-context bigram solution. We conduct an empirical and theoretical investigation of this multi-phase process, showing how successful learning results from the interaction between the transformer's layers, and uncovering evidence that the presence of the simpler unigram solution may delay formation of the final bigram solution. We examine how learning is affected by varying the prior distribution over Markov chains, and consider the generalization of our in-context learning of Markov chains (ICL-MC) task to n-grams for n is greater than 2. 
    more » « less