skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 1, 2026

Title: The role of surface water waves on cyanobacterial blooms in lakes
Abstract The biophysical processes by which wind‐driven surface waves influence cyanobacterial bloom formation, transport, aerosolization, and termination in lakes represent a major knowledge gap in our understanding of bloom dynamics. We synthesized the literature that examined how waves interact with cyanobacterial bloom processes including: cyanobacterial recruitment to inoculate blooms, sediment nutrient resuspension, the transport, aggregation, and disaggregation of bloom biomass by various wave‐driven physical processes (e.g., Stokes drift, Langmuir circulation), and the aerosolization of bloom biomass and cyanotoxins. Using this synthesis, we present a set of testable hypotheses and concepts that can be used to direct future research to better understand the mechanisms that may regulate wave and bloom interactions. Further, we highlight the differences in spatial and temporal scales that these processes act upon, and argue that mechanistic research into wave and bloom interactions must be applicable to whole ecosystems to be relevant in improving bloom management strategies.  more » « less
Award ID(s):
2200391
PAR ID:
10660137
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Limnology and Oceanography Letters
Volume:
10
Issue:
5
ISSN:
2378-2242
Page Range / eLocation ID:
602 to 618
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Cyanobacterial harmful algal bloom (CyanoHAB) proliferation is a global problem impacting ecosystem and human health. Western Lake Erie (WLE) typically endures two highly toxic CyanoHABs during summer: a Microcystis spp. bloom in Maumee Bay that extends throughout the western basin, and a Planktothrix spp. bloom in Sandusky Bay. Recently, the USA and Canada agreed to a 40% phosphorus (P) load reduction to lessen the severity of the WLE blooms. To investigate phosphorus and nitrogen (N) limitation of biomass and toxin production in WLE CyanoHABs, we conducted in situ nutrient addition and 40% dilution microcosm bioassays in June and August 2019. During the June Sandusky Bay bloom, biomass production as well as hepatotoxic microcystin and neurotoxic anatoxin production were N and P co-limited with microcystin production becoming nutrient deplete under 40% dilution. During August, the Maumee Bay bloom produced microcystin under nutrient repletion with slight induced P limitation under 40% dilution, and the Sandusky Bay bloom produced anatoxin under N limitation in both dilution treatments. The results demonstrate the importance of nutrient limitation effects on microcystin and anatoxin production. To properly combat cyanotoxin and cyanobacterial biomass production in WLE, both N and P reduction efforts should be implemented in its watershed. 
    more » « less
  2. Glass, Jennifer B. (Ed.)
    ABSTRACT Interactions between bacteria and phytoplankton can influence primary production, community composition, and algal bloom development. However, these interactions are poorly described for many consortia, particularly for freshwater bloom-forming cyanobacteria. Here, we assessed the gene content and expression of two uncultivated Acidobacteria from Lake Erie Microcystis blooms. These organisms were targeted because they were previously identified as important catalase producers in Microcystis blooms, suggesting that they protect Microcystis from H 2 O 2 . Metatranscriptomics revealed that both Acidobacteria transcribed genes for uptake of organic compounds that are known cyanobacterial products and exudates, including lactate, glycolate, amino acids, peptides, and cobalamins. Expressed genes for amino acid metabolism and peptide transport and degradation suggest that use of amino acids and peptides by Acidobacteria may regenerate nitrogen for cyanobacteria and other organisms. The Acidobacteria genomes lacked genes for biosynthesis of cobalamins but expressed genes for its transport and remodeling. This indicates that the Acidobacteria obtained cobalamins externally, potentially from Microcystis , which has a complete gene repertoire for pseudocobalamin biosynthesis; expressed them in field samples; and produced pseudocobalamin in axenic culture. Both Acidobacteria were detected in Microcystis blooms worldwide. Together, the data support the hypotheses that uncultured and previously unidentified Acidobacteria taxa exchange metabolites with phytoplankton during harmful cyanobacterial blooms and influence nitrogen available to phytoplankton. Thus, novel Acidobacteria may play a role in cyanobacterial physiology and bloom development. IMPORTANCE Interactions between heterotrophic bacteria and phytoplankton influence competition and successions between phytoplankton taxa, thereby influencing ecosystem-wide processes such as carbon cycling and algal bloom development. The cyanobacterium Microcystis forms harmful blooms in freshwaters worldwide and grows in buoyant colonies that harbor other bacteria in their phycospheres. Bacteria in the phycosphere and in the surrounding community likely influence Microcystis physiology and ecology and thus the development of freshwater harmful cyanobacterial blooms. However, the impacts and mechanisms of interaction between bacteria and Microcystis are not fully understood. This study explores the mechanisms of interaction between Microcystis and uncultured members of its phycosphere in situ with population genome resolution to investigate the cooccurrence of Microcystis and freshwater Acidobacteria in blooms worldwide. 
    more » « less
  3. Abstract Oceanic mixing, mostly driven by the breaking of internal waves at small scales in the ocean interior, is of major importance for ocean circulation and the ocean response to future climate scenarios. Understanding how internal waves transfer their energy to smaller scales from their generation to their dissipation is therefore an important step for improving the representation of ocean mixing in climate models. In this study, the processes leading to cross-scale energy fluxes in the internal wave field are quantified using an original decomposition approach in a realistic numerical simulation of the California Current. We quantify the relative contribution of eddy–internal wave interactions and wave–wave interactions to these fluxes and show that eddy–internal wave interactions are more efficient than wave–wave interactions in the formation of the internal wave continuum spectrum. Carrying out twin numerical simulations, where we successively activate or deactivate one of the main internal wave forcing, we also show that eddy–near-inertial internal wave interactions are more efficient in the cross-scale energy transfer than eddy–tidal internal wave interactions. This results in the dissipation being dominated by the near-inertial internal waves over tidal internal waves. A companion study focuses on the role of stimulated cascade on the energy and enstrophy fluxes. 
    more » « less
  4. Abstract To date, most research on cyanobacterial blooms in freshwater lakes has focused on the pelagic life stage. However, examining the complete cyanobacterial life cycle—including benthic life stages—may be needed to accurately predict future bloom dynamics. The current expectation, derived from the pelagic life stage, is that blooms will continue to increase due to the warmer temperatures and stronger stratification associated with climate change. However, stratification and mixing have contrasting effects on different life stages: while pelagic cyanobacteria benefit from strong stratification and are adversely affected by mixing, benthic stages can benefit from increased mixing. The net effects of these potentially counteracting processes are not yet known, since most aquatic ecosystem models do not incorporate benthic stages and few empirical studies have tracked the complete life cycle over multiple years. Moreover, for many regions, climate models project both stronger stratification and increased storm-induced mixing in the coming decades; the net effects of those physical processes, even on the pelagic life stage, are not yet understood. We therefore recommend an integrated research agenda to study the dual effects of stratification and mixing on the complete cyanobacterial life cycle—both benthic and pelagic stages—using models, field observations and experiments. 
    more » « less
  5. Spear, John R (Ed.)
    ABSTRACT Cyanobacterial blooms pose environmental and health risks due to their production of toxic secondary metabolites. While current methods for assessing these risks have focused primarily on bloom frequency and intensity, the lack of comprehensive and comparable data on cyanotoxins makes it challenging to rigorously evaluate these health risks. In this study, we examined 750 metagenomic data sets collected from 103 lakes worldwide. Our analysis unveiled the diverse distributions of cyanobacterial communities and the genes responsible for cyanotoxin production across the globe. Our approach involved the integration of cyanobacterial biomass, the biosynthetic potential of cyanotoxin, and the potential effects of these toxins to establish potential cyanobacterial health risks. Our findings revealed that nearly half of the lakes assessed posed medium to high health risks associated with cyanobacteria. The regions of greatest concern were East Asia and South Asia, particularly in developing countries experiencing rapid industrialization and urbanization. Using machine learning techniques, we mapped potential cyanobacterial health risks in lakes worldwide. The model results revealed a positive correlation between potential cyanobacterial health risks and factors such as temperature, N2O emissions, and the human influence index. These findings underscore the influence of these variables on the proliferation of cyanobacterial blooms and associated risks. By introducing a novel quantitative method for monitoring potential cyanobacterial health risks on a global scale, our study contributes to the assessment and management of one of the most pressing threats to both aquatic ecosystems and human health. IMPORTANCEOur research introduces a novel and comprehensive approach to potential cyanobacterial health risk assessment, offering insights into risk from a toxicity perspective. The distinct geographical variations in cyanobacterial communities coupled with the intricate interplay of environmental factors underscore the complexity of managing cyanobacterial blooms at a global scale. Our systematic and targeted cyanobacterial surveillance enables a worldwide assessment of cyanobacteria-based potential health risks, providing an early warning system. 
    more » « less