skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effect of Soluble Corrosion Products on Electrical Double Layer in LiCl-KCl Molten Salts
Corrosion in molten salts greatly hampers the application for renewable energy applications like molten salt reactors. To develop effective strategies for corrosion mitigation, understanding the interfacial structures and properties such as specific ion adsorption and electrical double layer capacitance are crucial. Using cyclic voltammetry and electrochemical impedance spectroscopy, we systematically studied the interfaces on various model electrodes including W (solid), Bi (liquid), and the stainless steel 316 in LiCl-KCl eutectic molten salts with the addition of corrosion species CrCl2and FeCl2. Both Cr2+and Fe2+ions increased electrical double layer capacitance, with Cr2+showing specific adsorption behavior and shifting the potential of zero charge, while Fe2+had minimal effect on point of zero charge. Two-working electrode measurements revealed increasing open-circuit potential and electrical double layer capacitance during the exposure of stainless steel 316, indicating its progressive corrosion and ion accumulation at the interface. X-ray photoelectron spectroscopy and Raman confirmed Cr enrichment at the interface. This work highlights the strong correlation between electrical double layer behavior and corrosion dynamics in molten salts and suggests electrical double layer capacitance as a sensitive, in situ indicator for corrosion monitoring.  more » « less
Award ID(s):
2239690
PAR ID:
10661437
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ECS
Date Published:
Journal Name:
Journal of The Electrochemical Society
Volume:
172
Issue:
11
ISSN:
0013-4651
Page Range / eLocation ID:
111502
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Highly concentrated aqueous electrolytes (termed water-in-salt electrolytes, WiSEs) at solid-liquid interfaces are ubiquitous in myriad applications including biological signaling, electrosynthesis, and energy storage. This interface, known as the electrical double layer (EDL), has a different structure in WiSEs than in dilute electrolytes. Here, we investigate how divalent salts [zinc bis(trifluoromethylsulfonyl)imide, Zn(TFSI)2], as well as mixtures of mono- and divalent salts [lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) mixed with Zn(TFSI)2], affect the short- and long-range structure of the EDL under confinement using a multimodal combination of scattering, spectroscopy, and surface forces measurements. Raman spectroscopy of bulk electrolytes suggests that the cation is closely associated with the anion regardless of valency. Wide-angle X-ray scattering reveals that all bulk electrolytes form ion clusters; however, the clusters are suppressed with increasing concentration of the divalent ion. To probe the EDL under confinement, we use a Surface Forces Apparatus and demonstrate that the thickness of the adsorbed layer of ions at the interface grows with increasing divalent ion concentration. Multiple interfacial layers form following this adlayer; their thicknesses appear dependent on anion size, rather than cation. Importantly, all electrolytes exhibit very long electrostatic decay lengths that are insensitive to valency. It is likely that in the WiSE regime, electrostatic screening is mediated by the formation of ion clusters rather than individual well-solvated ions. This work contributes to understanding the structure and charge-neutralization mechanism in this class of electrolytes and the interfacial behavior of mixed-electrolyte systems encountered in electrochemistry and biology. 
    more » « less
  2. We developed a method, by combining electrochemical and electrokinetic streaming current techniques to study ion distribution and ionic conductivity in the diffuse part of electrochemical double layer (EDL) of a metal-electrolyte interface, when potential is applied on the metal by a potentiostat. We applied this method to an electrochemically clean polycrystalline gold (poly Au)-electrolyte interface and measured zeta potential for various applied potentials, pH, and concentration of the electrolyte. Specific adsorption of chloride ions on poly Au was studied by comparing measurements of zeta potential in KCl and KClO 4 electrolytes. In absence of specific adsorption, zeta potential was found to increase linearly with applied potential, having slope of 0.04–0.06. When Cl − adsorption occurs, zeta potential changes the sign from positive to negative value at ∼750 mV vs Ag/AgCl applied potential. Complementary cyclic voltammetry and X-ray photoelectron spectroscopy studies were conducted to determine a degree of chloride ion adsorption on a poly Au. A correlation was observed between the applied potential at which zeta potential is zero and potential of zero charge for poly Au. Ion-distribution and ionic conductivity in the diffuse layer were calculated from the measured zeta potential data using nonlinear Poisson-Boltzmann distribution. 
    more » « less
  3. Abstract Herein, the significant impact of the spin‐coated Cr2O3interface layer on the electrical properties and performance characteristics of Au/undoped‐InP (Au/InP) Schottky diodes (SD) is reported. The material characterization of spin‐coated Cr2O3films using a wide variety of analytical techniques, namely, atomic force microscopy, field emission scanning electron microscope, X‐ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy, indicate the formation of hexagonal phase, nanocrystalline, and stoichiometric Cr2O3on InP. Optical absorption measurements reveal a bandgap of ≈3.5 eV. In‐depth analyses and detailed measurements of current‐voltage (I–V) and capacitance‐voltage (C‐V) employed to assess the interface characteristics and electrical performance of the Au/InP (SD) versus Au/Cr2O3/InP (MIS) devices. Compared to SD, MIS revealed superior rectifying properties. Indicating that the Cr2O3interface layer significantly influences the barrier height (ΦBH) of SD, the estimated ΦBH(0.64 eV (I–V)/0.86 eV (C‐V)) is higher than that of SD (0.57 eV (I–V)/0.67 eV (C‐V)). In addition, Cheungs and Nordes' methods are used to obtain the ΦBH, ideality factor (n), and series resistance (RS). The equivalent ΦBHvalues obtained from current–voltage, Cheungs, and Nordes methods demonstrate stability and dependability in addition to validating their superior characteristics of MIS devices. The interface state density (NSS) for MIS is lower than the SD's, indicating that the effectiveness of Cr2O3layer significantly reduces NSS. Analyses to probe the mechanism demonstrate that, in SD and MIS, the Schottky emission controls the higher bias area, while the Poole‐Frenkel emission dominates the reverse conduction mechanism at the lower bias region. The present work convincingly demonstrates the potential application of the Cr2O3interfacial layer in delivering the enhanced performance and contributes to the progression of electrical devices for emerging electronics and energy‐related applications. 
    more » « less
  4. Pyroprocessing is a potential route to close the nuclear fuel cycle. Used nuclear fuel (UNF) is electrolytically reduced from UO2 to U0 at a stainless-steel cathode while oxygen evolution occurs at a platinum anode in a molten LiCl-Li2O environment. Platinum is consumed during this process as a result of the formation and spallation of lithium platinate. To increase the economic viability of pyroprocessing, alternative low-cost, electrochemically efficient materials are needed to replace platinum. In this study, metal-oxide coated 316L stainless streel rods were explored as potential replacements. The characteristics of these coatings in molten LiCl-Li2O was evaluated through electrochemical techniques. The surface chemistry of the coatings was explored through X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectroscopy and scanning electron microscopy before and after exposure to molten salts to understand the degradation of the coatings. Results detailing the performance of the coatings will be presented. 
    more » « less
  5. Austenitic and ferritic stainless-steel interlayers for resistance spot welding of an AlSi-coated 2000MPa UTS press-hardened boron steel and a 6022-T4 aluminum alloy were investigated to improve joint performance. CALPHAD and kinetic-based simulations were explored to determine the effects of Cr on the formation of Fe–Al intermetallic compounds. Selected area diffraction reveals the formation of FeCrAl9 along the interlayer-Al interface and suppresses the formation of FeAl3. The implementation of stainless-steel interlayers significantly improved the mechanical performance of the joint, with the 430 foil condition experiencing a substantial decrease in the Fe–Al intermetallic. 
    more » « less