skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: From Threat to Trust: Exploiting Attention Mechanisms for Attacks and Defenses in Cooperative Perception
Cooperative perception (CP) extends detection range and situational awareness in connected and autonomous vehicles by aggregating information from multiple agents. However, attackers can inject fabricated data into shared messages to achieve adversarial attacks. While prior defenses detect object spoofing, object removal attacks remain a serious threat. Nevertheless, prior attacks require unnaturally large perturbations and rely on unrealistic assumptions such as complete knowledge of participant agents, which limits their attack success. In this paper, we present SOMBRA, a stealthy and practical object removal attack exploiting the attentive fusion mechanism in modern CP algorithms. SOMBRA achieves 99% success in both targeted and mass object removal scenarios (a 90%+ improvement over prior art) with less than 1% perturbation strength and no knowledge of benign agents other than the victim. To address the unique vulnerabilities of attentive fusion within CP, we propose LUCIA, a novel trustworthiness-aware attention mechanism that proactively mitigates adversarial features. LUCIA achieves 94.93% success against targeted attacks, reduces mass removal rates by over 90%, restores detection to baseline levels, and lowers defense overhead by 300x compared to prior art. Our contributions set a new state-of-the-art for adversarial attacks and defenses in CP.  more » « less
Award ID(s):
2229876
PAR ID:
10661452
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
34th USENIX Security Symposium (USENIX Security 25)
Date Published:
Page Range / eLocation ID:
7387-7406
Format(s):
Medium: X
Location:
Seattle, WA
Sponsoring Org:
National Science Foundation
More Like this
  1. Collaborative inference leverages diverse features provided by different agents (e.g., sensors) for more accurate inference. A common setup is where each agent sends its embedded features instead of the raw data to the Fusion Center (FC) for joint prediction. In this setting, we consider the inference-time attacks when a small fraction of agents are compromised. The compromised agent either does not send embedded features to the FC, or sends arbitrarily embedded features. To address this, we propose a certifiably robust COllaborative inference framework via feature PURification (CoPur), by leveraging the block-sparse nature of adversarial perturbations on the feature vector, as well as exploring the underlying redundancy across the embedded features (by assuming the overall features lie on an underlying lower dimensional manifold). We theoretically show that the proposed feature purification method can robustly recover the true feature vector, despite adversarial corruptions and/or incomplete observations. We also propose and test an untargeted distributed feature-flipping attack, which is agnostic to the model, training data, label, as well as the features held by other agents, and is shown to be effective in attacking state-of-the-art defenses. Experiments on ExtraSensory and NUS-WIDE datasets show that CoPur significantly outperforms existing defenses in terms of robustness against targeted and untargeted adversarial attacks. 
    more » « less
  2. Recent works have demonstrated the vulnerability of Deep Reinforcement Learning (DRL) algorithms against training-time, backdoor poisoning attacks. The objectives of these attacks are twofold: induce pre-determined, adversarial behavior in the agent upon observing a fixed trigger during deployment while allowing the agent to solve its intended task during training. Prior attacks assume arbitrary control over the agent's rewards, inducing values far outside the environment's natural constraints. This results in brittle attacks that fail once the proper reward constraints are enforced. Thus, in this work we propose a new class of backdoor attacks against DRL which are the first to achieve state of the art performance under strict reward constraints. These ``inception'' attacks manipulate the agent's training data -- inserting the trigger into prior observations and replacing high return actions with those of the targeted adversarial behavior. We formally define these attacks and prove they achieve both adversarial objectives against arbitrary Markov Decision Processes (MDP). Using this framework we devise an online inception attack which achieves an 100% attack success rate on multiple environments under constrained rewards while minimally impacting the agent's task performance. 
    more » « less
  3. null (Ed.)
    In Autonomous Driving (AD) systems, perception is both security and safety critical. Despite various prior studies on its security issues, all of them only consider attacks on cameraor LiDAR-based AD perception alone. However, production AD systems today predominantly adopt a Multi-Sensor Fusion (MSF) based design, which in principle can be more robust against these attacks under the assumption that not all fusion sources are (or can be) attacked at the same time. In this paper, we present the first study of security issues of MSF-based perception in AD systems. We directly challenge the basic MSF design assumption above by exploring the possibility of attacking all fusion sources simultaneously. This allows us for the first time to understand how much security guarantee MSF can fundamentally provide as a general defense strategy for AD perception. We formulate the attack as an optimization problem to generate a physically-realizable, adversarial 3D-printed object that misleads an AD system to fail in detecting it and thus crash into it. To systematically generate such a physical-world attack, we propose a novel attack pipeline that addresses two main design challenges: (1) non-differentiable target camera and LiDAR sensing systems, and (2) non-differentiable cell-level aggregated features popularly used in LiDAR-based AD perception. We evaluate our attack on MSF algorithms included in representative open-source industry-grade AD systems in real-world driving scenarios. Our results show that the attack achieves over 90% success rate across different object types and MSF algorithms. Our attack is also found stealthy, robust to victim positions, transferable across MSF algorithms, and physical-world realizable after being 3D-printed and captured by LiDAR and camera devices. To concretely assess the end-to-end safety impact, we further perform simulation evaluation and show that it can cause a 100% vehicle collision rate for an industry-grade AD system. We also evaluate and discuss defense strategies. 
    more » « less
  4. null (Ed.)
    A critical aspect of autonomous vehicles (AVs) is the object detection stage, which is increasingly being performed with sensor fusion models: multimodal 3D object detection models which utilize both 2D RGB image data and 3D data from a LIDAR sensor as inputs. In this work, we perform the first study to analyze the robustness of a high-performance, open source sensor fusion model architecture towards adversarial attacks and challenge the popular belief that the use of additional sensors automatically mitigate the risk of adversarial attacks. We find that despite the use of a LIDAR sensor, the model is vulnerable to our purposefully crafted image-based adversarial attacks including disappearance, universal patch, and spoofing. After identifying the underlying reason, we explore some potential defenses and provide some recommendations for improved sensor fusion models. 
    more » « less
  5. Abstract—Multi-Object Tracking (MOT) is a critical task in computer vision, with applications ranging from surveillance systems to autonomous driving. However, threats to MOT algorithms have yet been widely studied. In particular, incorrect association between the tracked objects and their assigned IDs can lead to severe consequences, such as wrong trajectory predictions. Previous attacks against MOT either focused on hijacking the trackers of individual objects, or manipulating the tracker IDs in MOT by attacking the integrated object detection (OD) module in the digital domain, which are model-specific, non-robust, and only able to affect specific samples in offline datasets. In this paper, we present ADVTRAJ, the first online and physical ID-manipulation attack against tracking-by-detection MOT, in which an attacker uses adversarial trajectories to transfer its ID to a targeted object to confuse the tracking system, without attacking OD. Our simulation results in CARLA show that ADVTRAJ can fool ID assignments with 100% success rate in various scenarios for white-box attacks against SORT, which also have high attack transferability (up to 93% attack success rate) against state-of-the-art (SOTA) MOT algorithms due to their common design principles. We characterize the patterns of trajectories generated by ADVTRAJ and propose two universal adversarial maneuvers that can be performed by a human walker/driver in daily scenarios. Our work reveals under-explored weaknesses in the object association phase of SOTA MOT systems, and provides insights into enhancing the robustness of such systems 
    more » « less