skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: An unprecedented fall drought drives Dust Bowl–like losses associated with La Niña events in US wheat production
Unprecedented precipitation deficits in the 2022–2023 growing season across the primary wheat-producing region in the United States caused delays in winter wheat emergence and poor crop growth. Using an integrated approach, we quantitatively unraveled a 37% reduction in wheat production as being attributable to both per–harvested acre yield loss and severe crop abandonment, reminiscent of the Dust Bowl years in the 1930s. We used random forest machine learning and game theory analytics to show that the main driver of yield loss was spring drought, whereas fall drought dominated abandonment rates. Furthermore, results revealed, across the US winter wheat belt, the La Niña phase of the El Niño Southern Oscillation (ENSO), increased abandonment rates compared to the El Niño phase. These findings underscore the necessity of simultaneously addressing crop abandonment and yield decline to stabilize wheat production amid extreme climatic conditions and provide a holistic understanding of global-scale ENSO dynamics on wheat production.  more » « less
Award ID(s):
2345039
PAR ID:
10661844
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
AAAS
Date Published:
Journal Name:
Science Advances
Volume:
10
Issue:
31
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Large-scale modes of climate variability can force widespread crop yield anomalies and are therefore often presented as a risk to food security. We quantify how modes of climate variability contribute to crop production variance. We find that the El Niño Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD), tropical Atlantic variability (TAV), and the North Atlantic Oscillation (NAO) together account for 18, 7, and 6% of globally aggregated maize, soybean, and wheat production variability, respectively. The lower fractions of global-scale soybean and wheat production variability result from substantial but offsetting climate-forced production anomalies. All climate modes are important in at least one region studied. In 1983, ENSO, the only mode capable of forcing globally synchronous crop failures, was responsible for the largest synchronous crop failure in the modern historical record. Our results provide the basis for monitoring, and potentially predicting, simultaneous crop failures. 
    more » « less
  2. Abstract Drought poses a major threat to agricultural production and food security. This study evaluates the changes in drought-induced crop yield loss risk for six crops (alfalfa, barley, corn, soybean, spring wheat, and winter wheat) between 1971–2000 and 1991–2020 across the contiguous US. Using a copula-based probabilistic framework, our results reveal a spatially heterogeneous change in yield risk to meteorological droughts, which varies with crop types. Regional analyses identify the largest temporal decline in yield risk in the Southeast and Upper Midwest, while the Northwest and South show an increase in risk. Among the considered anthropogenic and climatic drivers of crop productivity, changes in climatic variables such as high temperatures (e.g., killing degree days), vapor pressure deficit and precipitation show significantly stronger associations with changes in yield risk than irrigated area and nitrogen fertilizer application. Among the counties that observe drier drought events, only 55% exhibit an increase in crop yield loss risk due to drier droughts. The rest 45% show a decrease in yield loss risk due to mediation of favorable climatic and anthropogenic factors. Alarmingly, more than half (for barley and spring wheat), and one-third (for alfalfa, corn, soybean and winter wheat) of that the risk increasing regions have outsized influence on destabilizing national crop production. The findings provide valuable insights for policymakers, agricultural stakeholders, and decision-makers in terms of the potential ways and locations to be prioritized for enhancing local and national agricultural resilience and ensuring food security. 
    more » « less
  3. The El Niño Southern Oscillation (ENSO) is a major source of interannual climate variability. ENSO life cycles and the associated teleconnections evolve over multiple years at a global scale. This analysis is the first attempt to characterize the structure of the risk posed by trans-Pacific ENSO teleconnections to crop production in the greater Pacific Basin region. In this analysis we identify the large-scale atmospheric dynamics of ENSO teleconnections that affect heat and moisture stress during the growing seasons of maize, wheat and soy. We propose a coherent framework for understanding how trans-Pacific ENSO teleconnections pose a correlated risk to crop yields in major agricultural belts of the Americas, Australia and China over the course of an ENSO life cycle by using observations and a multi-model ensemble of climate anomalies during crop flowering seasons. Trans-Pacific ENSO teleconnections are often (but not always) offsetting between major producing regions in the Americas and those in northern China or Australia. El Niños tend to create good maize and soybean growing conditions in the US and southeast South America, but poor growing conditions in northern China, southern Mexico and the Cerrado in Brazil. The opposite is true during La Niña. Wheat growing conditions in southeast South America generally have the opposite sign of those in Australia. Furthermore, multi-year La Niñas can force multi-year growing season anomalies in Argentina and Australia. Most ENSO teleconnections relevant for crop flowering seasons are the result of a single trans-Pacific circulation anomaly that develops in boreal summer and persists through the following spring. During the late summer and early fall of a developing ENSO event, the tropical Pacific forces an atmospheric anomaly in the northern midlatitudes that spans the Pacific from northern China to North America and in the southern midlatitudes from Australia to southeast South America. This anomaly directly links the soybean and maize growing seasons of the US, Mexico and China and the wheat growing seasons of Argentina, southern Brazil and Australia. The ENSO event peaks in boreal winter, when the atmospheric circulation anomalies intensify and affect maize and soybeans in southeast South America. As the event decays, the ENSO-induced circulation anomalies persist through the wheat flowering seasons in China and the US. 
    more » « less
  4. Abstract Natural climate phenomena like El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) influence the Indian monsoon and thereby the region’s agricultural systems. Understanding their influence can provide seasonal predictability of agricultural production metrics to inform decision-making and mitigate potential food security challenges. Here, we analyze the effects of ENSO and IOD on four agricultural production metrics (production, harvested area, irrigated area, and yields) for rice, maize, sorghum, pearl millet, and finger millet across India from 1968 to 2015. El Niños and positive-IODs are associated with simultaneous reductions in the production and yields of multiple crops. Impacts vary considerably by crop and geography. Maize and pearl millet experience large declines in both production and yields when compared to other grains in districts located in the northwest and southern peninsular regions. Associated with warmer and drier conditions during El Niño, >70% of all crop districts experience lower production and yields. Impacts of positive-IODs exhibit relatively more spatial variability. La Niña and negative-IODs are associated with simultaneous increases in all production metrics across the crops, particularly benefiting traditional grains. Variations in impacts of ENSO and IOD on different cereals depend on where they are grown and differences in their sensitivity to climate conditions. We compare production metrics for each crop relative to rice in overlapping rainfed districts to isolate the influence of climate conditions. Maize production and yields experience larger reductions relative to rice, while pearl millet production and yields also experience reductions relative to rice during El Niños and positive-IODs. However, sorghum experiences enhanced production and harvested areas, and finger millet experiences enhanced production and yields. These findings suggest that transitioning from maize and rice to these traditional cereals could lower interannual production variability associated with natural climate variations. 
    more » « less
  5. An analysis of crop yields for the state of Missouri was completed to determine if an interannual or multidecadal variability existed as a result of the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). Corn and soybean yields were recorded in kilograms per hectare for each of the six climate regions of Missouri. An analysis using the Mokhov “method of cycles” demonstrated interannual, interdecadal, and multidecadal variations in crop yields. Cross-spectral analysis was used to determine which region was most impacted by ENSO and PDO influenced seasonal (April–September) temperature and precipitation. Interannual (multidecadal) variations found in the spectral analysis represent a relationship to ENSO (PDO) phase, while interdecadal variations represent a possible interaction between ENSO and PDO. Average crop yields were then calculated for each combination of ENSO and PDO phase, displaying a pronounced increase in corn and soybean yields when ENSO is warm and PDO is positive. Climate regions 1, 2, 4, and 6 displayed significant differences (p value of 0.10 or less) in yields between El Niño and La Niña years, representing 55–70 % of Missouri soybean and corn productivity, respectively. Final results give the opportunity to produce seasonal predictions of corn and soybean yields, specific to each climate region in Missouri, based on the combination of ENSO and PDO phases. 
    more » « less