The thermal stability of ∼420 mAh Na0.97Ca0.03[Mn0.39Fe0.31Ni0.22Zn0.08]O2(NCMFNZO)/hard carbon (HC) pouch cells was investigated using accelerating rate calorimetry (ARC) at elevated temperatures. 1 m NaPF6in propylene carbonate (PC):ethyl methyl carbonate (EMC) (1:1 by volume) was used as a control electrolyte. Adding 2 wt% fluoroethylene carbonate to the electrolyte improves the cell’s thermal stability by decreasing the self-heating rate (SHR) across the whole testing temperature range. The selected states-of-charge (SoC), including 70%, 84%, and 100%, exhibit minimal impact on the exothermic behavior, except for a slight decrease in SHR after ∼275 °C at 70% SoC. When compared to traditional lithium-ion batteries operating at 100% SoC, NCMFNZO/HC pouch cells demonstrate inferior thermal stability compared to LiFePO4(LFP)/graphite pouch cells, displaying a higher SHR from 220 to 300 °C. LiNi0.8Mn0.1Co0.1O2/graphite + SiOxpouch cells exhibit the worst safety performance, with an early onset temperature of ∼100 °C and the highest SHR across the entire temperature range. These results offer a direct comparison of the impact of SoC and electrolyte compositions on the thermal stability of SIBs at elevated temperatures, highlighting that there is still room for improvement in SIBs safety performance compared to LFP/graphite chemistry.
more »
« less
Thermal Stability Comparison of LiFePO 4 /Graphite and LiMn 0.6 Fe 0.4 PO 4 /Graphite Pouch Cells using Accelerating Rate Calorimetry
LiMn0.6Fe0.4PO4has attracted attention as a promising, high-energy, and cost-effective alternative to LiFePO4(LFP) for lithium-ion batteries. However, its thermal stability, especially at full cell level, remains less understood compared to LFP. This study compares the cycling performance and thermal stability of LiMn0.6Fe0.4PO4/graphite and LFP/graphite pouch cells using a consistent electrolyte formulation: 1.2 m lithium bis(fluorosulfonyl)imide (LiFSI) in ethylene carbonate (EC):ethyl methyl carbonate (EMC):dimethyl carbonate (DMC) (25:5:70 by volume) with 2 wt% vinylene carbonate (VC). Thermal stability was evaluated with two ∼250 mAh pouch cells through accelerating rate calorimetry at elevated temperatures. After roughly 275 cycles at C/3 and 40 °C, the LFP/graphite cells retained 91% of their initial capacity, while LMFP/graphite cells retained 89%, indicating slightly better electrochemical stability for LFP cells. Exothermic reactions in LMFP cells initiated around 125 °C, compared to 140 °C for LFP, implying higher thermal vulnerability. Despite this, both cell types exhibited similar self-heating rates below 0.1 °C min−1, demonstrating strong safety performance. Overall, although LMFP offers a higher voltage window, its thermal stability and cycling performance still slightly lag behind LFP.
more »
« less
- Award ID(s):
- 2301719
- PAR ID:
- 10662357
- Publisher / Repository:
- IOP Publishing Limited
- Date Published:
- Journal Name:
- Journal of The Electrochemical Society
- Volume:
- 172
- Issue:
- 9
- ISSN:
- 0013-4651
- Page Range / eLocation ID:
- 090532
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
An investigation of alternative lithium salts, lithium tetrafluoroborate (LiBF 4 ), lithium difluoro(oxalato)borate (LiDFOB) and lithium hexafluorophosphate (LiPF 6 ), in novel ester-based (methyl acetate/fluoroethylene carbonate- MA/FEC or methyl propionate/fluoroethylene carbonate- MP/FEC) electrolyte formulations has been conducted in LiNi 0.6 Co 0.2 Mn 0.2 O 2 (NCM622)/graphite cells to improve low temperature cycling performance of lithium ion batteries at −20 °C. Improved low temperature performance was observed with all the lithium salts in MA/FEC electrolyte while comparable room temperature (25 °C) capacities were observed with LiPF 6 salt only. Detailed ex-situ analysis of surface films generated with LiBF 4 , LiDFOB and LiPF 6 in ester-based electrolytes reveals that the solid electrolyte interphase (SEI) is predominately composed of lithium salt decompaction products and addition of 10% FEC (by volume%) may not be sufficient at forming a protective SEI.more » « less
-
Aqueous Li-ion batteries (ALIBs) are an important class of battery chemistries owing to the intrinsic non-flammability of aqueous electrolytes. However, water is detrimental to most cathode materials and could result in rapid cell failure. Identifying the degradation mechanisms and evaluating the pros and cons of different cathode materials are crucial to guide the materials selection and maximize their electrochemical performance in ALIBs. In this study, we investigate the stability of LiFePO4(LFP), LiMn2O4(LMO) and LiNi0.8Mn0.1Co0.1O2(NMC) cathodes, without protective coating, in three different aqueous electrolytes, i.e., salt-in-water, water-in-salt, and molecular crowding electrolytes. The latter two are the widely reported “water-deficient electrolytes.” LFP cycled in the molecular crowding electrolyte exhibits the best cycle life in both symmetric and full cells owing to the stable crystal structure. Mn dissolution and surface reduction accelerate the capacity decay of LMO in water-rich electrolyte. On the other hand, the bulk structural collapse leads to the degradation of NMC cathodes. LMO demonstrates better full-cell performance than NMC in water-deficient aqueous electrolytes. LFP is shown to be more promising than LMO and NMC for long-cycle-life ALIB full cells, especially in the molecular crowding electrolyte. However, none of the aqueous electrolytes studied here provide enough battery performance that can compete with conventional non-aqueous electrolytes. This work reveals the degradation mechanisms of olivine, spinel, and layered cathodes in different aqueous electrolytes and yields insights into improving electrode materials and electrolytes for ALIBs.more » « less
-
Abstract A new concentrated ternary salt ether‐based electrolyte enables stable cycling of lithium metal battery (LMB) cells with high‐mass‐loading (13.8 mg cm−2, 2.5 mAh cm−2) NMC622 (LiNi0.6Co0.2Mn0.2O2) cathodes and 50 μm Li anodes. Termed “CETHER‐3,” this electrolyte is based on LiTFSI, LiDFOB, and LiBF4with 5 vol% fluorinated ethylene carbonate in 1,2‐dimethoxyethane. Commercial carbonate and state‐of‐the‐art binary salt ether electrolytes were also tested as baselines. With CETHER‐3, the electrochemical performance of the full‐cell battery is among the most favorably reported in terms of high‐voltage cycling stability. For example, LiNixMnyCo1–x–yO2(NMC)‐Li metal cells retain 80% capacity at 430 cycles with a 4.4 V cut‐off and 83% capacity at 100 cycles with a 4.5 V cut‐off (charge at C/5, discharge at C/2). According to simulation by density functional theory and molecular dynamics, this favorable performance is an outcome of enhanced coordination between Li+and the solvent/salt molecules. Combining advanced microscopy (high‐resolution transmission electron microscopy, scanning electron microscopy) and surface science (X‐ray photoelectron spectroscopy, time‐of‐fight secondary ion mass spectroscopy, Fourier‐transform infrared spectroscopy, Raman spectroscopy), it is demonstrated that a thinner and more stable cathode electrolyte interphase (CEI) and solid electrolyte interphase (SEI) are formed. The CEI is rich in lithium sulfide (Li2SO3), while the SEI is rich in Li3N and LiF. During cycling, the CEI/SEI suppresses both the deleterious transformation of the cathode R‐3m layered near‐surface structure into disordered rock salt and the growth of lithium metal dendrites.more » « less
-
Du, Cheng (Ed.)Abstract With the increasing demand for developing large‐energy‐density and safe batteries, a reliable lithium metal as an anode becomes more and more important in various lithium metal and solid‐state batteries. On the basis of better lithium regulation from MXene, a lithiophilic lithium metal surface is designed by introducing a 2D hybrid coating that consists of a thin covalent organic framework (COF‐1) modified MXene layer (denoted as COF‐MXene‐Li). The abundant lithiophilic boroxine sites on 2D COF‐1 attract lithium ions while the MXene further regulates lithium homogeneous nucleation and growth, thus preventing dendrite formation. The coin cell battery paired with LiNi0.8Mn0.1Co0.1O2(NMC811) as cathode material displays 17% more capacity retention compared with pure lithium metal after 400 cycles at 0.5C.Over 81.4% capacity retention along with 99.96% Coulombic efficiency (CE) of a 1.0 Ah pouch cell versus LiNi0.8Co0.15Al0.05O2(NCA) after 250 cycles is received. The assembled 1.6 Ah pouch cell with NMC811 show an energy density of up to 366.7 Wh Kg−1and an actual energy density based on the whole cell of up to 339.7 Wh Kg−1. The improved cycling stability particularly in pouch cells opens broad applications for this hybrid coating modified lithium metal as anode electrode in a variety of large‐energy‐density battery systems.more » « less
An official website of the United States government

