skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Strategic Adversarial Attacks in AI-assisted Decision Making to Reduce Human Trust and Reliance.
With the increased integration of AI technologies in human decision making processes, adversarial attacks on AI models become a greater concern than ever before as they may significantly hurt humans’ trust in AI models and decrease the effectiveness of human-AI collaboration. While many adversarial attack methods have been proposed to decrease the performance of an AI model, limited attention has been paid on understanding how these attacks will impact the human decision makers interacting with the model, and accordingly, how to strategically deploy adversarial attacks to maximize the reduction of human trust and reliance. In this paper, through a human-subject experiment, we first show that in AI-assisted decision making, the timing of the attacks largely influences how much humans decrease their trust in and reliance on AI—the decrease is particularly salient when attacks occur on decision making tasks that humans are highly confident themselves. Based on these insights, we next propose an algorithmic framework to infer the human decision maker’s hidden trust in the AI model and dynamically decide when the attacker should launch an attack to the model. Our evaluations show that following the proposed approach, attackers deploy more efficient attacks and achieve higher utility than adopting other baseline strategies.  more » « less
Award ID(s):
2229876
PAR ID:
10662554
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Date Published:
Page Range / eLocation ID:
3020-3028
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The increased integration of artificial intelligence (AI) technologies in human workflows has resulted in a new paradigm of AI-assisted decision making,in which an AI model provides decision recommendations while humans make the final decisions. To best support humans in decision making, it is critical to obtain a quantitative understanding of how humans interact with and rely on AI. Previous studies often model humans' reliance on AI as an analytical process, i.e., reliance decisions are made based on cost-benefit analysis. However, theoretical models in psychology suggest that the reliance decisions can often be driven by emotions like humans' trust in AI models. In this paper, we propose a hidden Markov model to capture the affective process underlying the human-AI interaction in AI-assisted decision making, by characterizing how decision makers adjust their trust in AI over time and make reliance decisions based on their trust. Evaluations on real human behavior data collected from human-subject experiments show that the proposed model outperforms various baselines in accurately predicting humans' reliance behavior in AI-assisted decision making. Based on the proposed model, we further provide insights into how humans' trust and reliance dynamics in AI-assisted decision making is influenced by contextual factors like decision stakes and their interaction experiences. 
    more » « less
  2. Abstract AI assistance is readily available to humans in a variety of decision-making applications. In order to fully understand the efficacy of such joint decision-making, it is important to first understand the human’s reliance on AI. However, there is a disconnect between how joint decision-making is studied and how it is practiced in the real world. More often than not, researchers ask humans to provide independent decisions before they are shown AI assistance. This is done to make explicit the influence of AI assistance on the human’s decision. We develop a cognitive model that allows us to infer the latent reliance strategy of humans on AI assistance without asking the human to make an independent decision. We validate the model’s predictions through two behavioral experiments. The first experiment follows a concurrent paradigm where humans are shown AI assistance alongside the decision problem. The second experiment follows a sequential paradigm where humans provide an independent judgment on a decision problem before AI assistance is made available. The model’s predicted reliance strategies closely track the strategies employed by humans in the two experimental paradigms. Our model provides a principled way to infer reliance on AI-assistance and may be used to expand the scope of investigation on human-AI collaboration. 
    more » « less
  3. Recent advances in AI models have increased the integration of AI-based decision aids into the human decision making process. To fully unlock the potential of AI-assisted decision making, researchers have computationally modeled how humans incorporate AI recommendations into their final decisions, and utilized these models to improve human-AI team performance. Meanwhile, due to the black-box'' nature of AI models, providing AI explanations to human decision makers to help them rely on AI recommendations more appropriately has become a common practice. In this paper, we explore whether we can quantitatively model how humans integrate both AI recommendations and explanations into their decision process, and whether this quantitative understanding of human behavior from the learned model can be utilized to manipulate AI explanations, thereby nudging individuals towards making targeted decisions. Our extensive human experiments across various tasks demonstrate that human behavior can be easily influenced by these manipulated explanations towards targeted outcomes, regardless of the intent being adversarial or benign. Furthermore, individuals often fail to detect any anomalies in these explanations, despite their decisions being affected by them. 
    more » « less
  4. Recent advances in AI models have increased the integration of AI-based decision aids into the human decision making process. To fully unlock the potential of AI- assisted decision making, researchers have computationally modeled how humans incorporate AI recommendations into their final decisions, and utilized these models to improve human-AI team performance. Meanwhile, due to the “black-box” nature of AI models, providing AI explanations to human decision makers to help them rely on AI recommendations more appropriately has become a common practice. In this paper, we explore whether we can quantitatively model how humans integrate both AI recommendations and explanations into their decision process, and whether this quantitative understanding of human behavior from the learned model can be utilized to manipulate AI explanations, thereby nudging individuals towards making targeted decisions. Our extensive human experiments across various tasks demonstrate that human behavior can be easily influenced by these manipulated explanations towards targeted outcomes, regardless of the intent being adversarial or benign. Furthermore, individuals often fail to detect any anomalies in these explanations, despite their decisions being affected by them. 
    more » « less
  5. Proper calibration of human reliance on AI is fundamental to achieving complementary performance in AI-assisted human decision-making. Most previous works focused on assessing user reliance, and more broadly trust, retrospectively, through user perceptions and task-based measures. In this work, we explore the relationship between eye gaze and reliance under varying task difficulties and AI performance levels in a spatial reasoning task. Our results show a strong positive correlation between percent gaze duration on the AI suggestion and user AI task agreement, as well as user perceived reliance. Moreover, user agency is preserved particularly when the task is easy and when AI performance is low or inconsistent. Our results also reveal nuanced differences between reliance and trust. We discuss the potential of using eye gaze to gauge human reliance on AI in real-time, enabling adaptive AI assistance for optimal human-AI team performance. 
    more » « less