skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: ZT-SDN: An ML-Powered Zero-Trust Architecture for Software-Defined Networks
Zero Trust (ZT) is a security paradigm aiming to curtail an attacker’s lateral movements within a network by implementing least-privilege and per-request access control policies. However, its widespread adoption is hindered by the difficulty of generating proper rules owing to the lack of detailed knowledge of communication requirements and the characteristic behaviors of communicating entities under benign conditions. Consequently, manual rule generation becomes cumbersome and error prone. To address these problems, we proposeZT-SDN, an automated framework for learning and enforcing network access control in Software-Defined Networks (SDNs). ZT-SDN collects data from the underlying network and models the network “transactions” performed by communicating entities as graphs. The nodes represent entities, whereas the directed edges represent transactions identified by different protocol stacks observed. It uses novel unsupervised learning approaches to extract transaction patterns directly from the network data, such as the allowed protocol stacks and port numbers and data transmission behavior. Finally, ZT-SDN uses an innovative approach to generate correct access control rules and infer strong associations between them, allowing proactive rule deployment in forwarding devices. We show the framework’s efficacy in detecting abnormal network accesses and abuses of permitted flows in changing network conditions with real network datasets. Additionally, we showcase ZT-SDN’s scalability and the network’s performance when applied in an SDN environment.  more » « less
Award ID(s):
2229876
PAR ID:
10663431
Author(s) / Creator(s):
 ;  
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM Transactions on Privacy and Security
Volume:
28
Issue:
2
ISSN:
2471-2566
Page Range / eLocation ID:
1 to 35
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the Software Defined Networking (SDN) and Network Function Virtualization (NFV) era, it is critical to enable dynamic network access control. Traditionally, network access control policies are statically predefined as router entries or firewall rules. SDN enables more flexibility by re-actively installing flow rules into the switches to achieve dynamic network access control. However, SDN is limited in capturing network anomalies, which are usually important signs of security threats. In this paper, we propose to employ anomaly-based Intrusion Detection System (IDS) to capture network anomalies and generate SDN flow rules to enable dynamic network access control. We gain the knowledge of network anomalies from anomaly-based IDS by training an interpretable model to explain its outcome. Based on the explanation, we derive access control policies. We demonstrate the feasibility of our approach by explaining the outcome of an anomaly-based IDS built upon a Recurrent Neural Network (RNN) and generating SDN flow rules based on our explanation. 
    more » « less
  2. null (Ed.)
    In recent years, smart grid communications (SGC) has evolved to use new technologies not only for data delivery but also for enhanced smart grid (SG) security and reliability. Software Defined Networks (SDN) has proved to be a reliable and efficient architecture for handling diverse communication systems due to their ability to divide responsibilities of the network using control plane and data plane. This paper presents a graph learning approach for detecting and identifying Distributed Denial of Service (DDoS) attacks in SDN-SGC systems (GLASS). GLASS is a two phase framework that (1) detects if SDN-SGC is under DDoS attack using supervised graph deep learning and then (2) identifies the compromised entities using unsupervised learning methods. Network performance statistics are used for modeling SDN-SGC graphs, which train Graph Convolutional Neural Networks (GCN) to extract latent representations caused by DDoS attacks. Finally, spectral clustering is used to identify compromised entities. The experimental results, obtained by analysis of an IEEE 118-bus system, show the average throughput for compromised entities is able to maintain 84% of normal traffic level with GLASS, compared to achieving only 4% of normal throughput caused by DDoS attacks on compromised entities without the GLASS framework. 
    more » « less
  3. For the past decade, botnets have dominated network attacks in spite of significant research advances in defending against them. The distributed attack sources, the network size, and the diverse botnet attack techniques challenge the effectiveness of a single-point centralized security solution. This paper proposes a distributed security system against largescale disruptive botnet attacks by using SDN/NFV and machinelearning. In our system, a set of distributed network functions detect network attacks for each protocol and to collect real-time traffic information, which also gets relayed to the SDN controller for more sophisticated analyses. The SDN controller then analyzes the real-time traffic with the only forwarded information using machine learning and updates the flow rule or take routing/bandwidth-control measures, which get executed on the nodes implementing the security network functions. Our evaluations show the proposed system to be an efficient and effective defense method against botnet attacks. The evaluation results demonstrated that the proposed system detects large-scale distributed network attacks from botnets at the SDN controller while the network functions locally detect known attacks across different networking protocols. 
    more » « less
  4. For the past decade, botnets have dominated network attacks in spite of significant research advances in defending against them. The distributed attack sources, the network size, and the diverse botnet attack techniques challenge the effectiveness of a single-point centralized security solution. This paper proposes a distributed security system against large-scale disruptive botnet attacks by using SDN/NFV and machine-learning. In our system, a set of distributed network functions detect network attacks for each protocol and to collect real-time traffic information, which also gets relayed to the SDN controller for more sophisticated analyses. The SDN controller then analyzes the real-time traffic with the only forwarded information using machine learning and updates the flow rule or take routing/bandwidth-control measures, which get executed on the nodes implementing the security network functions. Our evaluations show the proposed system to be an efficient and effective defense method against botnet attacks. The evaluation results demonstrated that the proposed system detects large-scale distributed network attacks from botnets at the SDN controller while the network functions locally detect known attacks across different networking protocols. 
    more » « less
  5. Abstract OpenFlow-compliant commodity switches face challenges in efficiently managing flow rules due to the limited capacity of expensive high-speed memories used to store them. The accumulation of inactive flows can disrupt ongoing communication, necessitating an optimized approach to flow rule timeouts. This paper proposes Delayed Dynamic Timeout (DDT), a Reinforcement Learning-based approach to dynamically adjust flow rule timeouts and enhance the utilization of a switch’s flow table(s) for improved efficiency. Despite the dynamic nature of network traffic, our DDT algorithm leverages advancements in Reinforcement Learning algorithms to adapt and achieve flow-specific optimization objectives. The evaluation results demonstrate that DDT outperforms static timeout values in terms of both flow rule match rate and flow rule activity. By continuously adapting to changing network conditions, DDT showcases the potential of Reinforcement Learning algorithms to effectively optimize flow rule management. This research contributes to the advancement of flow rule optimization techniques and highlights the feasibility of applying Reinforcement Learning in the context of SDN. 
    more » « less