Abstract A mechanistic understanding of plant photosynthetic response is needed to reliably predict changes in terrestrial carbon (C) gain under conditions of chronically elevated atmospheric nitrogen (N) deposition. Here, using 2,683 observations from 240 journal articles, we conducted a global meta‐analysis to reveal effects of N addition on 14 photosynthesis‐related traits and affecting moderators. We found that across 320 terrestrial plant species, leaf N was enhanced comparably on mass basis (Nmass, +18.4%) and area basis (Narea, +14.3%), with no changes in specific leaf area or leaf mass per area. Total leaf area (TLA) was increased significantly, as indicated by the increases in total leaf biomass (+46.5%), leaf area per plant (+29.7%), and leaf area index (LAI, +24.4%). To a lesser extent than for TLA, N addition significantly enhanced leaf photosynthetic rate per area (Aarea, +12.6%), stomatal conductance (gs, +7.5%), and transpiration rate (E, +10.5%). The responses ofAareawere positively related with that ofgs, with no changes in instantaneous water‐use efficiency and only slight increases in long‐term water‐use efficiency (+2.5%) inferred from13C composition. The responses of traits depended on biological, experimental, and environmental moderators. As experimental duration and N load increased, the responses of LAI andAareadiminished while that ofEincreased significantly. The observed patterns of increases in both TLA andEindicate that N deposition will increase the amount of water used by plants. Taken together, N deposition will enhance gross photosynthetic C gain of the terrestrial plants while increasing their water loss to the atmosphere, but the effects on C gain might diminish over time and that on plant water use would be amplified if N deposition persists.
more »
« less
How Environment Affects Ontogenetic Differences in Leaf Functional Traits of Woody Plants
ABSTRACT AimThe consistency of patterns in ontogenetic differences in plant traits across the globe has not been thoroughly studied. Environmental conditions affect leaf functional traits, and these effects can differ between adult trees and saplings due to varying environmental conditions in their aerial and soil environments. Our integrative analysis aims to reveal the global universality of woody plants' ontogeny and explores influencing factors. LocationGlobal. Time PeriodStudies published in 1989–2023. Major Taxa StudiedWoody plants. MethodsWe performed a global meta‐analysis of woody plants with different plant functional types at 64 sites around the world, assessed the ontogenetic differences in nine key leaf traits and explored the environmental factors that affected the ontogenetic differences. ResultsWe observed that (1) leaf traits differed significantly between adult trees and saplings, with environmental factors playing varying roles. Photosynthetic capacity per unit area (Aa) and nitrogen content per unit dry mass (Nm) were lower in saplings than in adults under low solar radiation, but this trend reversed with increased solar radiation. Differences in stomatal density (SD) and stable carbon isotope composition (δ13C) between adults and saplings were greatest under low solar radiation; (2) ontogenetic differences in leaf thickness (LT), leaf dry mass per area (LMA) and stomatal conductance (gs) were greater at lower mean annual temperature (MAT); (3) at high mean annual precipitation (MAP), adults had higher nitrogen content per unit area (Na), while saplings had higherNmthan adults; (4) soil conditions were strongly correlated with ontogenetic differences in LT and SD, with soil pH as a key driver of variation inAa, LT, SD,NaandNm. Main ConclusionsOur findings indicate that ontogeny strongly modifies leaf functional traits and that multiple environmental factors influence the magnitude of ontogenetic differences in leaf traits. This underscores the importance of considering ontogeny when predicting trait values across plant developmental stages, modelling vegetation composed of individuals of different ages and forecasting vegetation responses to environmental changes.
more »
« less
- Award ID(s):
- 1831944
- PAR ID:
- 10663824
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Global Ecology and Biogeography
- Volume:
- 34
- Issue:
- 10
- ISSN:
- 1466-822X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Plant functional strategies change considerably as plants develop, driven by intraindividual variability in anatomical, morphological, physiological and architectural traits.Developmental trait variation arises through the complex interplay among genetically regulated phase change (i.e. ontogeny), increases in plant age and size, and phenotypic plasticity to changing environmental conditions. Although spatial drivers of intraspecific trait variation have received extensive research attention, developmentally driven intraspecific trait variation is largely overlooked, despite widespread occurrence.Ontogenetic trait variation is genetically regulated, leads to dramatic changes in plant phenotypes and evolves in response to predictable changes in environmental conditions as plants develop.Evidence has accumulated to support a general shift from fast to slow relative growth rates and from shade to sun leaves as plants develop from the highly competitive but shady juvenile niche to the stressful adult niche in the systems studied to date.Nonetheless, there are major gaps in our knowledge due to examination of only a few environmental factors selecting for the evolution of ontogenetic trajectories, variability in how ontogeny is assigned, biogeographic sampling biases on trees in temperate biomes, dependencies on a few broadly sampled leaf morphological traits and a lack of longitudinal studies that track ontogeny within individuals. Filling these gaps will enhance our understanding of plant functional ecology and provide a framework for predicting the effects of global change threats that target specific ontogenetic stages. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
-
Abstract PremiseMechanistic models using stomatal traits and leaf carbon isotope ratios to reconstruct atmospheric carbon dioxide (CO2) concentrations (ca) are important to understand the Phanerozoic paleoclimate. However, methods for preparing leaf cuticles to measure stomatal traits have not been standardized. MethodsThree people measured the stomatal density and index, guard cell length, guard cell pair width, and pore length of leaves from the sameGinkgo biloba,Quercus alba, andZingiber miogaleaves growing at known CO2levels using four preparation methods: fluorescence on cleared leaves, nail polish, dental putty on fresh leaves, and dental putty on dried leaves. ResultsThere are significant differences between trait measurements from each method. Modeledcacalculations are less sensitive to method than individual traits; however, the choice of assumed carbon isotope fractionation also impacted the accuracy of the results. DiscussionWe show that there is not a significant difference betweencaestimates made using any of the four methods. Further study is needed on the fractionation due to carboxylation of ribulose bisphosphate (RuBP) in individual plant species before use as a paleo‐CO2barometer and to refine estimates based upon widely applied taxa (e.g.,Ginkgo). Finally, we recommend that morphological measurements be made by multiple observers to reduce the effect of individual observational biases.more » « less
-
Abstract Understanding the impact of altitude on leaf hydraulic, gas exchange, and economic traits is crucial for comprehending vegetation properties and ecosystem functioning. This knowledge also helps to elucidate species' functional strategies regarding their vulnerability or resilience to global change effects in alpine environments. Here, we conducted a global study of dataset encompassing leaf hydraulic, gas exchange, and economic traits for 3391 woody species. The results showed that high‐altitude species possessed greater hydraulic safety (KleafP50), higher water use efficiency (WUEi) and conservative resource use strategy such as higher leaf mass per area, longer leaf lifespan, lower area‐based leaf nitrogen and phosphorus contents, and lower rates of photosynthesis and dark respiration. Conversely, species at lower altitudes exhibited lower hydraulic safety (KleafP50), lower water use efficiency (WUEi) and an acquisitive resource use strategy. These global patterns of leaf traits in relation to altitude reveal the strategies that alpine plants employ for hydraulic safety, water use efficiency, and resource, which have important implications for predicting forest productivity and acclimation to rapid climate change.more » « less
-
ABSTRACT AimGlobal climate change is compressing species' realised niches and further threatening their distributions. Species traits, especially the trait spectra synthesised from traits, are one way in which species can match changes in their environment. Hence, integrating trait spectra and niches will help us understand how species adapt to their environment under global change. LocationGlobal. Time PeriodPresent. Major Taxa StudiedAngiosperms. MethodWe collected root traits from 158 angiosperm species and leaf traits from 512 angiosperm species from a global trait database to construct the leaf and root trait ‘slow‐fast’ spectrum based on resource acquisition strategy, as well as the collaboration spectrum related to root mycorrhizal colonisation. After rebuilding their phylogenetic relationships and defining species' environmental niches based on 213,979 occurrences of these species, we examined the relationship between these trait spectra and environmental niches along global climatic patterns. ResultPlants with ‘slow’ leaf traits were generally associated with narrow niche breadths and marginal niche positions, especially in high precipitation areas. The relationship between the ‘slow‐fast’ spectrum in root traits and ‘marginal‐central’ niche position reversed with decreasing precipitation. However, the relationships between leaf traits and niche variables were significant for woody species but not for herbaceous species. Main ConclusionOur research expands the plant trait spectra in macroecology applications. The root and leaf ‘slow‐fast’ trait spectra of angiosperms are driven by both macroclimate and long‐term evolutionary pressure. Understanding how these traits relate to the niche of species helps to predict how that species is likely to adapt to environmental change, which can enhance the predictive ability of niche theory for plant environmental adaptability.more » « less
An official website of the United States government

