skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Agarwal, Girish"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Quantum entanglement has emerged as a great resource for spectroscopy and its importance in two-photon spectrum and microscopy has been demonstrated. Current studies focus on the two-photon absorption, whereas the Raman spectroscopy with quantum entanglement still remains elusive, with outstanding issues of temporal and spectral resolutions. Here we study the new capabilities provided by entangled photons in coherent Raman spectroscopy. An ultrafast frequency-resolved Raman spectroscopy with entangled photons is developed for condensed-phase molecules, to probe the electronic and vibrational coherences. Using quantum correlation between the photons, the signal shows the capability of both temporal and spectral resolutions not accessible by either classical pulses or the fields without entanglement. We develop a microscopic theory for this Raman spectroscopy, revealing the electronic coherence dynamics even at timescale of 50fs. This suggests new paradigms of optical signals and spectroscopy, with potential to push detection below standard quantum limit.

     
    more » « less
  2. Brillouin microscopy is an emerging label-free imaging technique used to assess local viscoelastic properties. Quantum-enhanced stimulated Brillouin scattering is demonstrated using low power continuous-wave lasers at 795 nm. A signal-to-noise ratio enhancement of 3.4 dB is reported by using two-mode intensity-difference squeezed light generated with the four-wave mixing process in atomic rubidium vapor. The low optical power and the excitation wavelengths in the water transparency window have the potential to provide a powerful bio-imaging technique for probing mechanical properties of biological samples prone to phototoxicity and thermal effects. The performance enhancement affordable through the use of quantum light may pave the way for significantly improved sensitivity that cannot be achieved classically. The proposed method for utilizing squeezed light for enhanced stimulated Brillouin scattering can be easily adapted for both spectroscopic and imaging applications in biology.

     
    more » « less
  3. The robust spin and momentum valley locking of electrons in two-dimensional semiconductors makes the valley degree of freedom of great utility for functional optoelectronic devices. Owing to the difference in optical selection rules for the different valleys, these valley electrons can be addressed optically. The electrons and excitons in these materials exhibit the valley Hall effect, where the carriers from specific valleys are directed to different directions under electrical or thermal bias. Here we report the optical analog of valley Hall effect, where the light emission from the valley-polarized excitons in a monolayerWS2propagates in different directions owing to the preferential coupling of excitonic emission to the high momentum states of the hyperbolic metamaterial. The experimentally observed effects are corroborated with theoretical modeling of excitonic emission in the near field of hyperbolic media. The demonstration of the optical valley Hall effect using a bulk artificial photonic media without the need for nanostructuring opens the possibility of realizing valley-based excitonic circuits operating at room temperature.

     
    more » « less
  4. null (Ed.)
  5. null (Ed.)
    Abstract Dr. Deborah Birx, the White House Coronavirus Task Force coordinator, told NBC News on “Meet the Press” that “[T]he U.S. needs a ‘breakthrough’ in coronavirus testing to help screen Americans and get a more accurate picture of the virus’ spread.” We have been involved with biopathogen detection since the 2001 anthrax attacks and were the first to detect anthrax in real-time. A variation on the laser spectroscopic techniques we developed for the rapid detection of anthrax can be applied to detect the Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2 virus). In addition to detecting a single virus, this technique allows us to read its surface protein structure. In particular, we have been conducting research based on a variety of quantum optical approaches aimed at improving our ability to detect Corona Virus Disease-2019 (COVID-19) viral infection. Indeed, the detection of a small concentration of antibodies, after an infection has passed, is a challenging problem. Likewise, the early detection of disease, even before a detectible antibody population has been established, is very important. Our team is researching both aspects of this problem. The paper is written to stimulate the interest of both physical and biological scientists in this important problem. It is thus written as a combination of tutorial (review) and future work (preview). We join Prof. Federico Capasso and Editor Dennis Couwenberg in expressing our appreciation to all those working so heroically on all aspects of the COVID-19 problem. And we thank Drs. Capasso and Couwenberg for their invitation to write this paper. 
    more » « less