skip to main content


Search for: All records

Creators/Authors contains: "Ahmed, Kareem"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 10, 2024
  2. Free, publicly-accessible full text available December 10, 2024
  3. This work characterizes the compressibility dynamics in turbulent fast flames for a range of turbulent flame speeds. These turbulent fast flames experience increased effects of compressibility through the formation of strong shocks and may develop a runaway acceleration combined with a pressure buildup that leads to turbulence induced deflagration-to-detonation transition (tDDT). Simultaneous high-speed particle image velocimetry, OH* chemiluminescence, schlieren, and pressure measurements are used to examine the reacting flow field and flame dynamics. We examine flames with turbulent flame speeds ranging from 100 to 600 m/s. At lower turbulent flame speeds, the flame is not able to produce favorable background conditions for deflagration-to-detonation transition (DDT) onset, and thus flame compressibility and turbulence amplification are less dominant, resulting in a weaker acoustic coupling between the flame and compressed region. As the turbulent burning velocities exceed the Chapman–Jouguet deflagration speed, favorable background conditions are produced, as we observe flame-generated shocks and flame-generated turbulence with higher turbulent velocities and larger turbulent scales. At this regime, the flame is categorized to be at the runaway transition regime that leads to tDDT.

     
    more » « less
  4. We use advanced experimental techniques to explore turbulence-induced deflagration-to-detonation transition (tDDT) in hydrogen–air mixtures. We analyze the full sequence of turbulent flame evolution from fast deflagration-to-detonation using simultaneous direct measurements of pressure, turbulence, and flame, shock, and flow velocities. We show that fast turbulent flames that accelerate and develop shocks are characterized by turbulent flame speeds that exceed the Chapman–Jouguet deflagration speed in agreement with the tDDT theory and direct numerical simulation (DNS) results. Velocity and pressure evolutions are provided to detail the governing mechanisms that drive turbulent flame acceleration. Turbulent flame speeds and fluctuations are examined to reveal flow field characteristics of the tDDT process. This work contributes to the understanding of fundamental mechanisms responsible for spontaneous initiation of detonations by fast turbulent flames.

     
    more » « less
  5. The present paper investigates droplet and aerosol emission from the human respiratory function by numerical and experimental methods, which is analyzed at the worst-case scenario, a violent sneeze without a face covering. The research findings develop the understanding of airborne disease transmission relevant to COVID-19, its recent variants, and other airborne pathogens. A human sneeze is studied using a multiphase Computational Fluid Dynamics (CFD) model using detached eddy simulation coupled to the emission of droplets that break up, evaporate, and disperse. The model provides one of the first experimental benchmarks of CFD predictions of a human sneeze event. The experiments optically capture aerosols and droplets and are processed to provide spatiotemporal data to validate the CFD model. Under the context of large random uncertainty, the studies indicate the reasonable correlation of CFD prediction with experimental measurements using velocity profiles and exposure levels, indicating that the model captures the salient details relevant to pathogen dispersion. Second, the CFD model was extended to study the effect of relative humidity with respect to the Wells curve, providing additional insight into the complexities of evaporation and sedimentation characteristics in the context of turbulent and elevated humidity conditions associated with the sneeze. The CFD results indicated correlation with the Wells curve with additional insight into features, leading to non-conservative aspects associated with increased suspension time. These factors are found to be associated with the combination of evaporation and fluid-structure-induced suspension. This effect is studied for various ambient air humidity levels and peaks for lower humidity levels, indicating that the Wells curve may need a buffer in dry climates. Specifically, we find that the increased risk in dry climates may be up to 50% higher than would be predicted using the underlying assumptions in Wells’ model. 
    more » « less